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Abstract
The risk of cardiovascular disease (CVD) in patients with rheumatoid arthritis (RA) is much higher than that in the 
general population. As its etiology is not fully understood, we performed a pilot study using a shotgun proteomic 
approach to investigate whether the plasma signature in RA patients with CVD might show an altered profile. 
Subjects with RA were compared to a group of RA patients with a previous cardiovascular event (CVE). The cohort 
consisted of an RA control group (n = 10) and a group (n = 10) of RA patients with a history of CVD. Samples were 
collected at least 6 months before the CVE and 3–6 months after the CVE. All subjects were matched to controls 
for age, sex, and medication use. Plasma depletion of the 14 most abundant proteins was followed by bottom-
up shotgun proteomics analysis (LC‒MS/MS). Relative changes in protein/peptide abundance were investigated 
using classical statistical analyses with Perseus and XG-Boost machine learning to compare between groups 
and to determine the relative importance of identified proteins, respectively. Principal component analysis (PCA) 
revealed no difference in the global protein and peptide signatures between the control and CVE groups. A total 
of 150, 239 and 74 protein ID’s showed in comparison between Post Event vs. controls, Event vs. no Event and Pre 
event vs. Post Event respectively a statistically difference in relative abundance (p < 0.05). Remarkedly a total of 236 
proteins ID’s showed a statistical significant difference in relative abundance in the PRE-Event group compared to 
the control group which could also be confirmed by XGboost machine learning. Here, we demonstrated potential 
differences in the plasma proteome signature of rheumatic patients with cardiovascular events. Interestingly, this 
signature may be present prior to CVE’s. However the conclusions must be drawn with caution, since this is a pilot 
study and further investigation with larger cohorts is warranted to identify potential risk markers that may predict 
the relative risk of CVEs in rheumatic diseases.
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Introduction
Inflammatory rheumatic diseases, particularly rheuma-
toid arthritis (RA), are recognized as autoimmune and/
or inflammatory disorders with more than 200 known 
manifestations [1, 2]. Initially, RA causes inflammation 
in the joints, resulting in pain, stiffness, and swelling, 
but other parts of the body, such as the eyes, lungs, and 
heart, can also be affected, making it a serious systemic 
disease [3]. To date, rheumatic diseases affect approxi-
mately 20 million patients worldwide, and a higher inci-
dence of cardiovascular events (CVEs) affecting and 
damaging the heart muscle and vasculature around the 
heart has been detected [4]. Despite the use of a number 
of markers for predicting RA disease progression/activ-
ity, such as C-reactive protein (CRP) [5], the erythrocyte 
sedimentation rate (ESR), rheumatoid factor (RF) [6], 
anti-cyclic citrullinated peptide (anti-CCP) [7, 8], and 
matrix metalloproteinases (MMPs) [9], the exact rela-
tionships between rheumatic patients and CVEs are still 
unclear [10]. The ratio of platelets to lymphocytes, an 
inflammatory marker in rheumatic diseases, may serve 
as a measure of the inflammatory status of a patient [11]. 
In combination with other predictors, including common 
proinflammatory cytokines, such as interleukin-6 (IL-6), 
tumor necrosis factor alpha (TNF-alpha), and IL-10 and 
lipid homeostasis [12–14], these inflammatory markers 
may serve as surrogate markers for predicting athero-
sclerotic risk [15]. Several epidemiological studies have 
reported an overall increase in cardiovascular mortality 
in patients with RA. However, the causality can still not 
be fully explained by traditional risk factors [4, 6]. Several 
studies have suggested that the baseline CRP concentra-
tion at baseline is an important predictor of CVD mortal-
ity in patients with new-onset inflammatory polyarthritis 
[16, 17]. Thus, studying the relationship between rheu-
matic diseases and CVEs should contribute to a better 
understanding of the etiology of CVD in patients with a 
rheumatic background. This may eventually allow us to 
fine-tune its treatment [18].

The plasma proteome is a vast and complex, readily 
accessible cocktail of proteins and potential markers, that 
may vary in abundance depending on the disease status 
of a patient with RA [19–22]. Systems biology approaches 
have proven to be a promising valuable tool for studying 
the plasma proteome/metabolome and could provide 
new insights in the search for associations between CVD 
risk and potential markers of interest [20, 23–26]. These 
markers of interest can originate from different locations 
on the body. Primarily, they may be directly derived from 
plasma proteins and/or metabolites but might also origi-
nate from damaged surrounding tissues that leak into the 
blood circulation [4, 6, 27].

Here, we performed a pilot plasma proteomic study 
in a unique, well-matched RA patient group to evaluate 

feasibility and identify pathways/markers that may lead 
to a better prediction of CVD risk.

Materials & methods
Patient samples/study design
This retrospective pilot study was conducted on plasma 
from patients diagnosed with RA, consisting of a group 
that developed CVEs and an age- and sex-matched RA 
control group that was considered healthy with respect 
to CVEs.

Patients were recruited using Reade’s patient medi-
cal records and biobank database, which consists of data 
from subjects who had previously participated in other 
RA trials and signed an informed consent form.

First, we looked for a recorded CVE with a precise date 
in the medical history and/or medical letters. To verify 
this, we also used the pharmacy history medication list 
to check whether the patient actually received medica-
tion and whether the date was correct. We searched for 
P2Y12 inhibitors, such as Ticagrelor, Perstantin, and 
Clopidogrel (which are used for the treatment of myo-
cardial infarction or cerebral infarction). This resulted 
in approximately 279 patients. These 279 patients were 
then searched in the biobank database for samples from 
at least 6 months BEFORE and 3–6 months AFTER the 
event. This resulted in 10 patients who met the above 
criteria. We then matched the 10 RA patients who were 
diagnosed with a cardiovascular event by age and sex 
with 10 control RA patients who did not have an event. 
The medical records of the latter group were similarly 
reviewed, with no evidence of an experienced cardiovas-
cular event, which was further verified by medication use. 
All blood samples were drawn into conventional tubes 
containing ethylenediaminetetraacetic acid (EDTA)/ 
K2EDTA and were stored in the biobank at -80  °C until 
further processing. The study was conducted in accor-
dance with the Declaration of Helsinki and approved by 
the local medical ethics committee of Slotervaart Hospi-
tal. All patients provided written informed consent.

Plasma depletion (top 14 most abundant proteins)
Plasma depletion of highly abundant proteins is essential 
for increasing total protein coverage prior to LC‒MS/
MS analysis [28]. Liquid chromatography (Äkta Explorer 
10  s, GE, Mijdrecht, The Netherlands) was performed 
with a Multi Affinity Removal Column (Human-14HC 
4.6 × 50 mm, Agilent Technologies, Santa Clara, US). The 
column contained immobilized antibodies to capture the 
top 14 most abundant plasma proteins, which accounted 
for more than 90–95% of the total protein mass. Prior to 
injection, the system was rinsed with the equil/load/wash 
buffer A (pH 7.0) (Agilent Technologies, Santa Clara, US). 
A plasma sample was diluted 1:4 with buffer A, and 100 
µL of sample was injected at a flow rate of 0.125 ml/min 
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of buffer A. The flow through (containing the depleted 
plasma) was collected in different fractions in a 96-well 
plate (250 µL/well). Next, a buffer switch (Buffer B pH 
3.0) (Agilent Technologies, Santa Clara, US) combined 
with a flow rate increase of up to 1 mL/min was applied. 
This resulted in the release of the 14 most abundant pro-
teins captured (Supplemental Fig. 1). The wells contain-
ing the flow-through proteins were pooled (4 wells per 
run, 2 runs per sample) for further processing.

Fraction concentration and trypsin gold digestion
After concentration, the sample was subjected to protein 
digestion using the rapigest-SF method with trypsin gold 
A total of 50 µg of total protein was pipetted into a 0.5 mL 
Eppendorf low-binding tube to a final volume of 116 µL 
using ULC/ms grade water (Biosolve BV, Valkenswaard, 
the Netherlands). Subsequently, 15 µL of 10% acetoni-
trile (ACN) (Biosolve BV, Valkenswaard, Netherlands), 
15 µL of 1% Rapigest SF Surfactant (Waters, Milford, 
US) diluted in 50 mM ammonium bicarbonate (Sigma‒
Aldrich, Saint Louis, US), and 1.5 µL of 0.5 M dithiothrei-
tol (DTT) (Sigma Aldrich, Saint Louis, US) were added. 
Next, 3 µL of 1  mg/ml alcohol dehydrogenase (Yeast, 
Sigma Aldrich, and Saint Louis, US) dissolved in saline 
was added as the internal standard.

This mixture was then incubated at 60  °C for 30  min 
to allow denaturation of the protein disulfide bonds. 
DTT was added to prevent reformation of the disulfide 
bonds. After incubation, 1.5 µL of 1  M iodoacetamide 
(IAA) (Sigma Aldrich, Saint Louis, US) was added, and 
the mixture was incubated in the dark at room tem-
perature for 30  min to prevent reformation of disulfide 
bonds. After incubation, 1.0 µL of trypsin gold (Promega, 
Madison, US) was added to digest the protein content at 
37 °C overnight, and after incubation, 7.9 µL of 10% tri-
fluoroacetic acid (TFA) (Sigma Aldrich, Saint Louis, US) 
was added to lower the pH, thereby inactivating the tryp-
sin. Finally, all samples were centrifuged at 14,750×g for 
2 min, and the supernatant containing the peptide mix-
ture was pipetted into a new 0.5 mL low binding tube for 
further purification.

C18 pipette-based solid phase extraction (SPE) and 
peptide quantification
To initially activate the pipette-based C18 column (Agi-
lent Bond Elut OMIX Pipette-based SPE, Agilent Tech-
nologies, Santa Clara, US), 100 µL of 50% acetonitrile 
(ACN) (Biosolve, Valkenswaard, Netherlands) was pipet-
ted up and down and finally eluted into a waste tube. 
After activation, the C18 tip was rinsed three times with 
100µL of 0.1% formic acid LC‒MS grade (FA) (Thermo 
Fisher Scientific, Waltham, US). Then, 100 µL of sample 
mixture was loaded onto the C18 tip and eluted into 
another low-binding tube. After loading, the C18 tip was 

“washed” 3 times, and the purified peptides were eluted 
into a clean low-binding tube by loading 100 µL of 75% 
acetonitrile (ACN) (Biosolve, Valkenswaard, Nether-
lands). Quantification of all eluted peptides was per-
formed by using the Piercetm Quantitative Colorimetric 
Peptide Assay (Thermo Scientific, Rockford, US) in a 
96-well plate. Subsequently, all samples were freeze-dried 
overnight and were resolubilized in 10% acetonitrile 
(ACN) (Biosolve, Valkenswaard, Netherlands)/0.1% tri-
fluoroacetic acid (TFA) (Sigma Aldrich, Saint Louis, US)/
ULC/89.9% ULC/MS grade water (Biosolve BV, Valken-
swaard, the Netherlands) at such a volume to reach a 
final peptide concentration of 100 ng/µL.

LC‒MS/MS analysis
Mass spectrometric analysis was carried out on a 
TIMS-TOF Pro (Bruker, Bremen, Germany) instrument 
equipped with an Ultimate 3000 nanoRSLC UHPLC sys-
tem (Thermo Scientific, Germeringen, Germany) [29]. 
Specifically, a total of 200 ng (2 µL) of peptide per sample 
was injected onto a C18 column (75 m, 250 mm, 1.6 m 
particle size; Aurora, Ionopticks, Fritzroy, Australia) 
heated at 50 °C.

The sample was loaded at 400 nl/min for 2 min in 3% 
solvent B and separated using a multistep gradient: 6% 
solvent B for 55 min, 21% solvent B for 21 min, 31% sol-
vent B for 12 min, 42.5% solvent B for 3 min and 99% sol-
vent B for 7  min (solvent A: 0.1% formic acid in water, 
solvent B: 0.1% formic acid in acetonitrile). Analysis of 
the eluted peptides was performed using a time-of-flight 
mass spectrometer with a collision energy of 20–59 eVa. 
The precursor scan ranged from 100 to 1700 m/z, and the 
TIMS range was 0.6–1.6 V.s/cm2 in PASEF mode [29].

To monitor the accuracy of the mass spectrometer, 
a quality control (QC) sample was prepared by pool-
ing 2 µL of all patient samples in one vial. After every 10 
sample injections, the system was injected with this QC 
sample, allowing any changes in the absolute peak inten-
sities to be observed over the time it took for the system 
to measure the 60 patient samples and 7 QC samples, 
thereby controlling for technical variation.

Normalization, data analysis and statistics
Validation of the dataset is critical prior to analysis. A 
quality control sample was included in the TIMS-TOF 
analysis to correct for machine bias, and a sample spike-
in peptide (ADH) was added to correct for inter- and 
intra-peak variation. The tracing of the intensities of the 
QC samples over time was monitored (Supplemental 
Fig.  2). The mathematical function created to monitor 
intensities over time was manually set to a second-order 
polynomial function trend line, which allowed normal-
ization of the entire dataset (Supplemental Fig. 3).
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Spectral analysis was performed using SearchGUI (ver-
sion 4.1.1) and a peptide shaker (version 2.2.0). Mass 
spectrometry protein identification was performed using 
MaxQuant software (version 1.6.14.0) and the Human 
Proteome Database from UniProt (© 2002–2023 Uni-
Prot consortium), which was used in combination with 
reversed decoy protein sequences for false discovery rate 
(FDR) estimation of protein identification [30].

The settings in MaxQuant were as follows: trypsin/P 
digestion enzyme, allowing for a maximum of 2 missed 
cleavages. The variable modifications were set to oxida-
tion (M), and the fixed modifications were set to carb-
amidomethyl (C). Matching between runs was enabled 
with a matching time window of 12 s and a matching ion 
mobility window of 0.05 indices as the default setting for 
the TIMS-DDA. For label-free quantification, both iBAQ 
and LFQ were enabled.

The resulting intensities were normalized using RStu-
dio (version 2021.09.0 Build 351 with R (version 4.1.1) 
to implement and normalize the matrix by the calcu-
lated function. Spike protein normalization was also per-
formed in R-studio. The code used to normalize these 
files can be found in supplementary file 1. Plot visualiza-
tion and t tests were performed using Perseus (version 
2.0.11). The Benjamini-Hochberg FDR method was used 
for correction for multiple testing and was set to 0.05. 
Pathway analysis was performed using the pathway anal-
ysis tool of the Reactome database [31].

Machine learning analysis
The eXtreme Gradient Boosting (XGBoost) algorithm 
was used to select a panel of proteins that showed the 
best ability to predict the difference between the control 
group and the CVD group that experienced a CVD event. 
To reduce the complexity of the analysis, a filtering pro-
cess (using the ANOVA F value) was applied to select the 
top 50 most important proteins. A stability selection pro-
cess was then applied to prevent overfitting and ensure 
the robustness of the results. The complete dataset was 
randomly divided into 20 different subsets. Each of the 
subsets consisted of 85% of the data. Within each ran-
dom subset, leave-one-out cross-validation was applied. 
The training set included all samples but one sample, 
and the sample that was left out was included in the test 
set. The hyperparameters of the XGBoost classifier were 
optimized via a randomized search with triple cross-val-
idation. For each random search, 10 random parameter 
settings were tested. The training set consisted of 70% of 
the data, and the validation set contained the remaining 
30%. The splits were made using a stratified shuffle split. 
The final performance of the model was evaluated using 
the area under the curve (AUC) metric. The importance 
of each feature in the model was determined by calcu-
lating the mean decrease in impurity, in which the most 

important feature was scaled to 100%. The other feature 
importance levels are relative to the most important 
feature. All of these steps were performed using Python 
(v3.7.7) and the scikit-learn package (v0.23.1) (Program 
code available on request). Pathway analysis was per-
formed by using Gene Ontology and Reactome applica-
tions [32].

Results
Patients
In this study, we investigated the plasma proteome of 
patients with RA or RA in addition to CVEs, and we 
hypothesized that differences in the plasma fingerprint 
would predict the cardiovascular outcome of the sub-
jects based on their cardiovascular history. A total of 20 
RA patients were enrolled: 10 patients with a recent (3–6 
months) history of CVEs were matched with patients of 
sex and age. The baseline table (Table 1) shows that the 
ages of both groups were the same (63.3 years). Half of 
both groups consisted of women. The disease duration 
for the control group, with a median of 15.7, was much 
higher compared to the CVE group (9.7). In addition, 
other disease characteristics, such as anti-citrullinated 
protein autoantibodies (ACPA) and rheumatoid factor 
(RF), as well as the use of RA-related medications, were 
more or less similar in both groups. In the CVE group, 
half of the patients had dyslipidemia and were treated 
with statins. Notably, half of the patients in the non-CVE 
group used platelet aggregation inhibitors. Due to miss-
ing data in the patients’ records, smoking status, alcohol 
consumption, BMI and physical activity level could not 
be included in this table.

Data handling and analysis
After LC‒MS/MS analysis and subsequent protein iden-
tification, the raw intensities and peptides were summa-
rized in a matrix file (Available on request). The protein 
ID file included a total of 429 identified proteins, and 
the peptide file revealed 5335 identified sequences cor-
responding to a total of 580 unique proteins (Data avail-
able on GitHub, Link: ​h​t​t​p​​s​:​/​​/​g​i​t​​h​u​​b​.​c​​o​m​/​​j​h​l​e​​v​e​​l​s​G​​I​T​/​​P​
l​a​s​​m​a​​-​p​r​​o​t​e​​o​m​e​-​​a​n​​a​l​y​​s​i​s​​-​o​f​-​​R​A​​-​p​a​​t​i​e​​n​t​s​-​​r​e​​v​e​a​​l​s​-​​C​V​A​
-​​h​i​​s​t​o​​r​y​-​​d​e​p​e​​n​d​​e​n​t​​-​d​i​​f​f​e​r​​e​n​​c​e​s​-​i​n​-​f​i​n​g​e​r​p​r​i​n​t). All the 
matrices were first cleaned and subsequently analyzed by 
using Rstudio. With the use of the “cleaning” codes (Sup-
plemental attachment 1 and 2), all peak intensity files 
were normalized and transformed for further analysis in 
Perseus.

To visualize an overview of potential differences 
between the CVE and non-CVE groups for this complex 
dataset, principal component analysis (PCA) was per-
formed to generate 2D plots. These plots combine the 
intensities into components that best describe the loca-
tions of many different intensities (Fig. 1). The centroids 

https://github.com/jhlevelsGIT/Plasma-proteome-analysis-of-RA-patients-reveals-CVA-history-dependent-differences-in-fingerprint
https://github.com/jhlevelsGIT/Plasma-proteome-analysis-of-RA-patients-reveals-CVA-history-dependent-differences-in-fingerprint
https://github.com/jhlevelsGIT/Plasma-proteome-analysis-of-RA-patients-reveals-CVA-history-dependent-differences-in-fingerprint
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represent the total potential differences between the 
groups based on the peptide intensities (A) and protein 
identifications (B). The analysis of variance of the PCA 
plots is visualized using distance matrices, resulting in 
an ANOVA table. Although this function produces no 

significant values, the plots show a potential difference 
between the CVE and non-CVE groups in both the pep-
tide and protein datasets. PCA plot visualization is only 
able to provide a general overview and lacks detailed 
information on the individual identified proteins. To 

Table 1  Baseline characteristics
Patient Characteristics All patients (n=20) CVE

(n=10)
Controls
(n=10)

Demographics
Age, years, mean (sd) 63,3± 11,3 63,4± 11,9 63,1± 11,8
Woman no (%) 10 (50%) 5 (50%) 5 (50%)
RA disease characteristics
Disease duration, months 11,2 (7,5-16,7) 9,7 (5,7-16,1) 15,7 (8,5-16,4)
RF positive, n (%) 16 (80%) 8 (80%) 8 (80%)
ACPA positive, n (%) 16 (80%) 8 (80%) 8 (80%)
NSAID 7 (35%) 4 (40%) 3 (30%)
csDMARD 19 (95%) 10 (100%) 9 (90%)
bDMARD 19 (95%) 9 (90%) 10 (100%)
CV Risk factors
Hypertension 10 (50%) 5 (50%) 5 (50%)
Antihypertensive agents 10 (50%) 5 (50%) 5 (50%)
Dyslipidaemia 6 (30%) 5 (50%) 1 (10%)
  Statins 6 (30%) 5 (50%) 1 (10%)
Diabetus mellitus 3 (10%) 0 (0%) 2 (20%)
  Antidiabetics 1 (5%) 0 (0%) 1 (10%)
Platelet aggregation inhibitors 15 (75%) 10(100%) 5 (50%)
Dual antiplatelet therapy (acetylsalicylic acid AND P2Y12 inhibitor) 10(50%) 10(100%) 0(0%)
Data are presented as mean ± SD, median (IQR: interquartile range) or number (percentage) where appropriate. ACPA: Anti-citrullinated protein autoantibodies, RF: 
rheumatoid factor, DMARD: disease-modifying anti-rheumatic drug, bDMARD: biological DMARD, csDMARD: conventional synthetic DMARD, NSAIDs: non-steroidal 
anti-inflammatory drugs

Fig. 1  PCA plots showing centroids of the (A) peptide database matrix and (B) protein database matrix before (red), after (green) the CVE and the controls 
(blue). The centroids show no trend in the difference in distribution of each group (Adonis function, permutational ANOVA applied) resulting in a p-value 
of (A) 0.6982 and (B) 0.853 respectively
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obtain a more detailed view of the dataset, further analy-
sis by examining individual intensities using multivariate 
analysis was evaluated as a next step.

Patient study statistical analysis
More detailed visualization at the protein level could be 
achieved after cleaning and normalization of both the 
protein and peptide matrices, which were then read, 
transformed and visualized by the Perseus application. 
The transformation of intensities to a log2(x) scale allows 
for much better behavior in statistical tests due to the 
normal distribution of the data. With these transformed 
and normally distributed data, paired and unpaired t 
tests were used to compare the means of 2 groups. These 

tests were then visualized in a volcano plot showing the 
log2-fold change on the x-axis, which is similar to the 
difference in intensity measured between the groups 
(Fig. 2). In all four of the comparison plots, a substantial 
amount of proteins demonstrated a difference in abun-
dance in the depicted comparisons. This indicates that 
the conditions of the patients appear to have an effect on 
protein expression and/or protein levels in the plasma. 
A comprehensive summary of all protein ID’s with a p 
value < 0.05 in the assessed comparison analyses of the 4 
different conditions has been provided in supplementary 
file 3.

Fig. 2  Volcano plots of the–log10 (p-value) versus the log2 fold change of peptide intensity, to compare groups a two-sample Student’s T-Test with a 0.05 
false discovery rate (FDR) is used to indicate significance between given groups. Significant values (p-value < 0,05) are indicated as filled circles (blue) 
and (p-value < 0.01) filled (red) squares. The total overview of all significant proteins can be found in supplemental file 3. (A) T-test with CVD compared to 
without CVD (239 sign. proteins), (B) paired T-test Before CVD group compared to After CVD (74 sign. proteins), (C) T-test before CVD compared to control 
group (236 sign. proteins), (D) T-test After CVD compared to control group (150 significant proteins)
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Pathway analysis
To put these results into a general perspective, a Reac-
tome pathway analysis was performed with all of the 
significantly different proteins that emerged from the sta-
tistical analysis. The protein IDs can be read and traced 
back to a pathway and its significance in the list given 
(Table  2). This overrepresentation analysis of the sig-
nificant proteins provided a list of proteins that could be 
linked to a set of significantly altered pathways. In addi-
tion, Gene Ontology analysis (GO analysis) was per-
formed only on the significant genes identified in the 
groups with and without a proven CVE. The percentages 
of significant proteins and their corresponding biologi-
cal processes are shown in Fig. 3. By comparing the GO 
analysis with the Reactome pathway analysis, most of the 
genes associated with the significant proteins found were 
hits related to stress response and defense processes. It is 

also noteworthy that more than half of the identified pro-
teins that are significantly different in samples that suffer 
from a CVE are related to the stress response.

Machine learning
Additionally a machine learning approach, the XGBoost 
model, was utilized to discriminate and confirm any sig-
nificant differences between the 4 different comparisons 
as demonstrated in Fig. 2. Between the control group and 
the pre-CVE group the model showed discriminative 
performance (AUC 0.72; Fig. 4) as for all the other mod-
els no discrimate performance was reached (Not shown). 
A set of features identified through the Gini importance 
was then obtained (Supplemental Fig.  4), and a differ-
ence in the 15 most important features between the two 
groups was observed (Fig. 5). Univariate analyses of these 
15 features revealed significant differences between the 

Table 2  Pathway analysis using the reactome pathway analysis, these are the most significant pathways sorted by p-value. (A) 
significant proteins in CVD compared to no CVD, (B) significant proteins in Pre-CVE group compared to post-CVE, (C) significant 
proteins in the pre-CVE compared to the control group, (D) significant proteins in post-CVE group compared to the control group
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groups (Fig. 6). Notably, 11 of the 15 DEGs were lower in 
the pre-CVE group than in the matched controls.

Discussion
In this pilot study, patients with RA were compared with 
a group of RA patients who experienced a cardiovascular 
event (CVE) in addition to their rheumatic background. 
A shotgun proteomic approach was used to investigate 
whether the plasma signature in the CVE group differed 
from that in the non-CVE group before and after CVE.

An important aspect of this pilot study is that we 
aimed to predict cardiovascular events by selecting 
patients based on treatment with dual antiplatelet ther-
apy (acetylsalicylic acid and P2Y12 inhibitor), as P2Y12 
inhibitors are initiated only after a cardiovascular event. 
comprehensive assessment of the medical records was 
conducted to verify the occurrence of a cardiovascular 
event, ensuring that the patient selection process was 
highly accurate However, in the control group, 50% had 
hypertension without evidence of a previous cardiovas-
cular event, and this group was also using acetylsalicylic 
acid for primary prevention. A key strength of the study 
lies in the meticulous selection of patients through phar-
macy data and medical records, which did not interfere 
with the primary objective of predicting cardiovascular 
events in RA patients.

Principal component analysis (PCA) revealed that the 
overall centroids tended to be at different positions. There 
may already be a difference in the signature between the 
CVE group and the non-CVE group, although this dif-
ference reached no statistical significance (Permanova 
pvalue > 0.1). It should be noted that in a complex sys-
tem such as the plasma proteome, there may still be sig-
nificant differences between individual proteins or sets of 
proteins. These nuanced differences cannot be captured 
by PCA, as this method aims to maximize the variance 

within the dataset on a global scale. To provide a more 
detailed view of the behavior of all identified individual 
proteins, a univariate analysis of relative abundance in the 
different comparisons was used. The plots in Fig. 4 show 
that many peptides together with their corresponding 
identified proteins appeared to be significantly different 
between the groups. Interestingly, the group of patients 
who suffered from a cardiovascular event showed an 
increase in platelet basic protein compared to the con-
trols and demonstrated significantly greater intensity 
compared to the pre-CVE group. However, these find-
ings are in line with the literature and are expected given 
the etiology of the development of a CVE, where platelet 
activation plays an initial and key role in the thrombus 
formation of atherothrombosis and the onset of a cardiac 
event [33, 34].

As shown in Fig.  4A and C, cholinesterase was more 
abundant in the non-CVE group than in the control 
group, but cholinesterase was still more abundant in the 
non-CVE group than in the “before CVE” group. The 
cholinesterase-matched peptides appeared to be more 
intense in the group of patients who did not suffer a car-
diovascular event and may provide meaningful infor-
mation for predicting a CVE. It would be interesting to 
further investigate the role of this enzyme in relation to 
the anti-inflammatory pathways with respect to cardio-
vascular risk [35].

Pathway analysis revealed a list of the top 10 most sig-
nificant biological processes in which the identified pro-
tein set appeared to be involved. In all assays, the platelet 
degranulation pathway was remarkably abundant, even 
in non-CVE samples. In all the samples, significant path-
ways involving the complement cascade, platelet regula-
tion and insulin growth factor regulation were detected. 
Notably, more than half of the significant genes were 
related to the response to stress. This may indicate that 

Fig. 3  Gene Ontology analysis [32] of significantly different genes between samples that suffered a cardiovascular event and samples that did not. The 
percentage relates to the % of significant proteins as identified in the data set which can be associated to the different biological processes as indicated
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even before CVEs, a number of proteins are differentially 
expressed based on subclinical damage to the vascula-
ture and/or surrounding tissues in terms of endothelial 
dysfunction, vessel wall inflammation, oxidative stress, 
apoptosis, coagulation and thrombosis [36].

Machine learning is a form of artificial intelligence 
in the growing field of data science and is necessary for 
the unbiased future study of (prote)omic datasets [37]. 
Here, we applied the XGBoost model, a type analy-
sis that is slowly finding its way into the rheumatology 
research field as well [38]. Besides for confirmation this 
also allowed us to identify patterns which can not be seen 

by multivariate analysis and classical statistical tests used 
previously, such as the Perseus application used here.

In all the different comparisons, a top 15 most impor-
tant protein sets could be identified, showing differences 
in fingerprints between the groups. As shown in the radar 
plots in the non-CVE group vs. the CVE group before the 
event, profound differences in protein fingerprints were 
observed which also revealed to have some potential pre-
dictive power as shown in the generated ROC curve. This 
actually confirms the findings determined by classical 
statistical approaches and is likely a good indication that 
there may be new markers or sets of markers that have 

Fig. 4  ROC curve of the Control vs. the pre CVE group to predict a potential difference in plasma fingerprint between the control group and the pre-CVD 
group (AUC = 0.72 ± 0.09) as generated using R. At a treshhold of a J index of 0.42 (black line) a 67% Sensitivity and a 75% was reached
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predictive value with regard to the risk of developing a 
CVE in the (near) future in an individual. This was nicely 
demonstrated in the presented ROC curve (AUC of 0.72). 
Notably, one of the top 10 protein IDs included was GSN. 
This protein has previously been associated with low 
abundance and increased disease activity in individuals 
with RA [39–41]. Among a variety of biological func-
tions, including apoptosis, the GSN protein is a member 
of the GSN family and has important functions in cutting 
and sealing actin filaments. Recently, increasing evidence 
has shown that GSN is also closely related to atheroscle-
rosis, which involves lipid metabolism, inflammation and 
thrombosis [42].

Some limitations of this study must be mentioned. 
Plasma depletion affects the completeness of the total 
number of proteins identified. There is a risk of losing 
proteins during sample preparation that form a complex 
with the depleted proteins in the first column step. On 
the other hand, after analysis of the depleted protein frac-
tion by LC‒MS/MS, a total of 20 confident proteins were 
identified, including the targeted top 14 (data not shown, 
available on request), implying that any excessive loss of 
nontargeted proteins seems to be very limited [28].

Despite the small overall sample size, the matched con-
trol design, accounting for age, medication use, and dis-
ease state, ensures that the comparisons drawn are valid 
and statistically robust. However, due to the limited sam-
ple size, these findings must be interpreted with caution. 
As this is a pilot study, further investigation with a larger 
cohort is crucial, but the results from this trial offer a 

promising direction for future research. It is essential 
to emphasize that these findings, derived from a small 
sample, should be considered exploratory, and definitive 
conclusions should be drawn from larger cohorts or an 
expanded sample size within the current study.

It should be recognized that comparing the groups with 
respect to different relative protein abundances and dif-
ferent protein patterns does not provide direct insight 
into causality. It will be of great interest to further inves-
tigate these findings in an independent new group of 
patients for confirmation by using a targeted approach of 
selecting the protein set deduced from this study.

In conclusion, we suggest that the increased risk of 
developing CVEs in RA patients may be reflected in the 
altered plasma fingerprint prior to CVEs and that better 
treatment should be achieved in a preventive, personal-
ized manner. Our findings in this study may be a valuable 
contribution to the development of a more efficient per-
sonalized clinical treatment regarding the prevention of 
cardiovascular risk in the field of rheumatology.

Fig. 5  (A) summary of the relative importance (X-axis in %) of the top 15 identified proteins (Y-axis) in the entire dataset determining the difference in 
fingerprint between the controls and the pre-CVE group. All based on Gini importance. (B) RADAR plot visualizing the analysis comparing the control vs. 
pre-CVE group showing the top 15 determining proteins of relative importance. The model used: XGboost leave one out
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