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Abstract 

Horticulture productivity has been increasingly restricted by heat stress from growing global warming, making it 
far below the optimum production capacity. As a popular ornamental cultivar of tree peony, Paeonia suffruticosa ‘Yu 
Hong’ has also been suffering from heat stress not suitable for its optimal growth. To better understand the response 
mechanisms against heat stress of tree peony, investigations of phenotypic changes, physiological responses, and 
quantitative proteomics were conducted. Phenotypic and physiological changes indicated that 24 h of exposure to 
heat stress (40 °C) was the critical duration of heat stress in tree peony. The proteomic analyses revealed a total of 100 
heat‑responsive proteins (HRPs). According to bioinformatic analysis of HRPs, the heat tolerance of tree peony might 
be related to signal transduction, synthesis/degradation, heat kinetic proteins, antioxidants, photosynthesis, energy 
conversion, and metabolism. Our research will provide some new insights into the molecular mechanism under the 
response against the heat stress of tree peony, which will benefit the future breeding of heat‑resistant ornamental 
plants.
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Introduction
Global temperatures have been rising in recent decades 
mainly due to the rapid accumulation of greenhouse 
gas in the atmosphere [1], making the higher tempera-
ture key to plant growth and development as an essen-
tially abiotic limited factor [2, 3]. Tree peony (Paeonia 
suffruticosa, Paeoniaceae) is a deciduous shrub widely 

distributed around the world [4, 5]. As an excellent orna-
mental plant, tree peony has been adored by people for 
its elegant appearances and gorgeous colors, and even 
awarded the ‘king of flowers’ in China [6–9]. In cool cli-
mates, tree peony can grow vigorously under trees and 
along riverbanks. However, temperatures over 26  °C 
in the summer will interrupt its normal growth, which 
severely limits their use as ornamental plants. Therefore, 
improving new tree peony cultivars with heat-resistance 
is of great importance for ornamental breeding.

How serious the plant is affected under certain stress 
can be accurately reflected by some physiological and 
biochemical indices. Previous research has shown that 
plants respond to external stress by enhancing antioxi-
dant enzyme activities, like peroxidase and superoxide 
dismutase, to remove reactive oxygen species (ROS) from 
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the body and weaken lipid oxidation in the cell mem-
brane [10, 11], as well as the synthesizing osmoregulatory 
substances like proline and soluble protein to maintain 
the water balance inside and outside the cell [12, 13]. 
Furthermore, the level of malondialdehyde and relative 
conductivity can be used to characterize the severity of 
cell damage [14, 15]. However, most research regarding 
tree peony heat tolerance focus on physiological and bio-
chemical changes, while few are on molecular biology. 
A lack of understanding of the molecular mechanism of 
tree peony heat tolerance makes it necessary to perform 
molecular investigations on its heat stress response.

Proteins are critical components of cellular responses, 
and changes of proteomic facing stress can reveal how 
plants respond to stress [16, 17]. Proteomics has become 
a cornerstone of systematic biology and are effective in 
addressing numerous biological problems in recent dec-
ades along with the development of protein sequencing 
technology [1, 18]. Isobaric tags for relative and abso-
lute quantification (iTRAQ) together with tandem mass 
spectrometry (MS/MS) has been developed as a superior 
choice for precise quantification of diverse proteins, espe-
cially the lowly expressed proteins [19–21]. For example, 
iTRAQ combined with MS/MS was used to investigate 
differentially expressed proteins associated with shoot 
dormancy release in tree peony under low-temperature 
treatment [6]; similarly iTRAQ combined with MS/MS 
was used to investigate the molecular mechanism of 
hybridization incompatibility in tree peony and its rela-
tives [22]. However, to our knowledge, there have been 
no reports on the use of proteomic approaches to evalu-
ate heat tolerance in tree peony.

Leaves are the principal trophic organs that directly 
sense temperature changes in the environment and have 
phenotypic plastic responses to such changes [23]. Tem-
perature fluctuations also affect leaf photosynthesis and 
transpiration, which are the foundations of plant growth 
and development [24]. As a result, research focusing on 
the impacts of high temperatures on leaves will benefit 
the understanding how plants respond to heat stress. 
Herein, the iTRAQ-MS/MS and corresponding biologi-
cal analyses to characterize the proteomic changes of 
the heat-tolerant tree peony ‘Yu Hong’ leaves under heat 
stress, and to reveal the responsive mechanism of tree 
peony under heat stress at the protein level, and to pro-
vide a theoretical basis for the future cultivation of new 
heat-tolerant tree peony germplasm.

Material and methods
Plant materials
Tree peony seeds were collected from the National Color 
Family Farm in Jinhua, Zhejiang Province, and the annual 

live seedlings of Jiangnan tree peony cultivar ‘Yu Hong’ 
with high heat tolerance were used in this study.

The seeds were dried naturally indoors after sampling, 
soaked in water for 24 h, plump seeds were chosen to be 
sterilized with 0.5 percent potassium permanganate solu-
tion, and sowed in the Zhejiang A & F University base in 
September 2018. Selected seedlings with steady growth 
patterns were transferred into pots with a diameter of 
50  cm in March 2019. Each pot contained one plant. 
Routine management was conducted during the slow 
seedling stage.

Seedling stress treatment
Live seedlings with good uniformity and growth were 
chosen and separated into two groups: control (ambient 
treatment at 25 °C) and experimental (high temperature 
treatment at 40 °C). Four treatment gradients (0, 12, 24, 
and 36 h) were set in the control group and the experi-
mental group respectively, and three biological replicates 
were set in each gradient, a total of 24 pots of plant mate-
rials. After 0, 12, 24, and 36 h of treatment, the leaf tis-
sues were collected, marked, and rapidly placed in liquid 
nitrogen for subsequent measurement of the physiologi-
cal indicators and protein extraction. During the experi-
ment, the air humidity in the incubator was set to 80%, 
the light intensity was set to 4000 LX, and the light time 
was set to 12 h of light and 12 h of darkness.

Measurement of physiological parameters in seedlings
The acidic ninhydrin colorimetric technique was used to 
determine the content of proline (Pro) [25, 26]. The guai-
acol method was used to determine the content of perox-
idase (POD) [27]. The thiobarbituric acid (TBA) method 
was used to determine the content of malondialdehyde 
(MDA) [28]. The nitrogen blue tetrazolium (NBT) pho-
tochemical reduction method was used to measure 
the content of superoxide dismutase (SOD) [29]. The 
Coomassie bright blue technique was used to determine 
the content of soluble protein SP [30]. The relative elec-
tric conductivity (REC) of leaves after various treatments 
can be measured using a conductivity meter (DDS-307A, 
Shanghai Yoke Instrument Co., Ltd.). REC is equal to (S1/
S2) 100 after measuring the initial electrolyte leakage 
(S1), heating the sample to 100℃, and measuring the final 
electrolyte leakage (S2) at room temperature.

Protein extraction, digestion, iTRAQ labeling, and data 
analysis
Protein extraction was performed according to the 
trichloro-acetic acid/acetone precipitation method [31] 
for the three materials under each treatment, with-
out mixing. Samples were ground into powder in liquid 
nitrogen and dissolved in lysis buffer (pH = 8) containing 
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8 mol/L urea, 0.2% SDS, and 50 mmol/L Tris–HCl, fol-
lowed by 5  min of ultrasonication on ice. The lysate 
was centrifuged at 13 000 r/min for 20  min at 4  °C 
and the supernatant was transferred to a clean tube. 
Extracted proteins were reduced with 2  mmol/L DTT 
for 1 h at 55 °C and subsequently alkylated with sufficient 
iodoacetic acid for 1 h at 25 °C. Then samples were mixed 
with 5 volumes of precooled acetone by vortexing and 
incubated at –20  °C for 3  h. Samples were then centri-
fuged and the precipitation was collected. After washing 
twice with cold acetone, the pellet was dissolved by dis-
solution buffer (pH = 8.5) containing 8  mol/L urea and 
0.1 mol/L TEAB. Total protein concentration was deter-
mined by the Bradford protein assay [32].

Enzymatic digestion of trypsin to sample protein at 
a 20:1 ratio. After 15  h of digestion at 37  °C, peptides 
were desalted with a C18 cartridge to remove high-con-
centration urea. The six labeling reagents iTRAQ115, 
iTRAQ116, iTRAQ117, iTRAQ118, iTRAQ119, and 
iTRAQ121 of the iTRAQ reagent-8plex complex kit 
(Sigma, USA) were used to label the experimental (TE1, 
TE2, TE3) and control (CK1, CK2, CK3) desalting pep-
tides, respectively, according to the manufacturer’s 
instructions. The labeling reagent and peptides were dis-
solved with 70 µL of isopropanol and 20 µL of 0.5 mol/L 
TEAB, respectively. One unit of labeling reagent was 
used for 100 μg of peptides. After incubation for 1 h at 
room temperature, the reaction was stopped with 100 µL 
of 50  mmol/L Tris–HCl (pH = 8). Individually iTRAQ-
labeled peptides were mixed in equal volumes, and then 
desalted and lyophilized. iTRAQ-labeled peptide mix 
was fractionated using a XB ridge Peptide BEH C18 col-
umn (25 cm × 4.6 mm, 5 µm) on a L3000 HPLC Cperat-
ing System at a rate of 1 mL/min; the column oven was 
set as 50  °C. Buffer A (2% acetonitrile, pH = 10) and B 
(98% acetonitrile, pH = 10) were used to develop a gra-
dient for elution. The solvent gradient was set as fol-
lows: 0–3  min, 100% A, 0% B; 3–21  min, 95% A, 5% B; 
21–27  min, 80% A, 20% B; 27–33  min, 70% A, 30% B; 
33–58  min, 0% A, 100% B. Based on the peak pattern, 
12 fractions were chosen. All fractions were lyophilized 
and reconstituted in 0.1% formic acid. Proteomics analy-
ses were processed using an EASY-nLCTM 1200 UHPLC 
system (ThermoFisher) coupled with a Q Exactive HF-X 
mass spectrometer (ThermoFisher). A total of 2  µg of 
total peptides reconstituted in 0.1% formic acid was 
injected onto an Acclaim PepMap100 C18 NanoTrap col-
umn (100  µm × 2  cm, 5  µm). Then peptides were sepa-
rated on a Reprosil-Pur 120 C18-AQ analytical column 
(150 µm × 15 cm, 1.9 µm), at a flow rate of 600 nL/min 
with a 5–100% linear gradient of eluent B (0.1% formic 
acid in 80% acetonitrile) in eluent A (0.1% formic acid in 
H2O). The detailed solvent gradient listed as follows: 10% 

B, 90% A, 2 min; 30% B, 70% A, 49 min; 50% B, 50% A, 
2 min; 90% B, 10% A, 2 min; 100% B, 5 min.

Q Exactive HF-X mass spectrometer was operated in 
positive polarity mode with a capillary temperature of 
320  °C and spray voltage of 2.3 kV. Full MS scans rang-
ing from 350 to 1500 m/z were acquired at a resolution 
of 60 000 (at 200  m/z) with a maximum ion injection 
time of 20 ms and an automatic gain control target value 
of 3 × 106. The 40 most abundant precursor ions from 
the full MS scan were selected for fragmentation using 
higher energy collisional dissociation fragment analysis 
at a resolution of 15,000 (at 200 m/z) with a normalized 
collision energy of 32%, an automatic gain control target 
value of 1 × 105, an intensity threshold of 8.3 × 103, the 
dynamic exclusion parameter of 60 s and a maximum ion 
injection time of 45 ms.

Using the search engines, the obtained spectra from 
each fraction were individually compared to the Uni-
prot Oryza sativa Database from uniprotOryzasativa. 
2.1 of Proteome Discoverer (PD 2.1, ThermoFisher, 
USA). On the peptide and protein levels, a protein was 
recognized as a protein having at least one distinct pep-
tide (FDR ≤ 0.01), respectively. Different protein groups 
were created from proteins with similar peptide com-
positions that could not be distinguished based on an 
MS/MS study. During the search, iTRAQ quantification 
was done using iTRAQ 8-plex. The protein quantitation 
results were statistically analyzed by t-test, and the signif-
icant ratios, defined as P < 0.05 and fold change (FC) ≥ 1.5 
or ≤ 0.67, were considered heat-responsive proteins 
(HRPs).

Bioinformatics analysis
The sequences of HRPs were compared with three pub-
lic databases: KEGG (Kyoto Encyclopedia of Genes and 
Genomes, http:// www. genome. jp/ kegg), COG (Clus-
ters of Orthologous Groups of proteins, http:// www. 
ncbi. Nlm. nih. gov/ COG), GO (Gene Ontology, http:// 
geneo ntolo gy. org/). The Protein Blast (https:// blast. ncbi. 
nlm. nih. gov/ Blast. cgi) was used for sequence similarity 
comparison.

Statistical analysis
One-way analysis of variance (ANOVA) with Duncan’s 
multiple range tests was conducted on the data, and 
p < 0.05 was considered significant. t-test analysis on pro-
tein quantitative results, p < 0.05 was considered signifi-
cant. All the above analyses were accomplished with the 
IBM SPSS Statistics 21.0 software package (IBM Corpo-
ration, Armonk, NY, USA). All figures were drawn with 
the Origin 21.0 software (OlriginLab Co., Northampton, 
MA, USA).

http://www.genome.jp/kegg
http://www.ncbi.Nlm.nih.gov/COG
http://www.ncbi.Nlm.nih.gov/COG
http://geneontology.org/
http://geneontology.org/
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi


Page 4 of 14Ma et al. Proteome Science           (2022) 20:18 

Results
Phenotype and physiological responses to heat stress
To investigate the critical time of heat stress treatment 
for ‘Yu Hong’, phenotypic and physiological indices were 
recorded at 0, 12, 24, and 36  h of after heat treatment, 
respectively.

The morphology of ‘Yu Hong’ leaves changed signifi-
cantly as the high temperature treatment duration was 
extended. Compared to treatment 0  h (Fig.  1A), slight 
brown spots appeared on the edge of the leaves after 
12 h of heat stress (Fig. 1B), The brown spots on the edge 
of leaves increased significantly after 24 h of heat stress 
compared to 12 h, and the stems and leaves were slightly 
yellowed (Fig. 1C). The seedlings developed much worse 
and the leaves showed obvious heat damage symptoms 
after 36 h of heat stress, with browning of the leaf edges, 
curling and crinkling of the leaves, narrowing of the leaf 
area, and plants on the verge of withering (Fig. 1D).

The SOD activity, POD activity, proline content, and SP 
of ‘Yu Hong’ leaves showed a trend of increasing and then 
decreasing with the extension of treatment time, MDA 
content was gradually increasing, and the REC showed a 
trend of increasing and then stabilizing under heat stress. 
Among them, SOD activity increased significantly after 
24  h of heat stress, then recovered to the treatment 0 
level after 36 h. After 12 h of high temperature treatment, 
POD activity and SP content began to rise dramatically, 
peaked after 24 h, and then recovered to pre-treated lev-
els after 36 h. After 12 h of high temperature treatment, 
proline content grew considerably, peaked after 24 h, and 
then recovered to pre-treatment levels after 36  h. After 

24 h of high temperature treatment, the MDA level began 
to rise rapidly, peaking at 36 h. After 24 h of treatment, 
the REC peaked and remained steady as the treatment 
time was extended (Fig. 2).

Responses of HRPs to heat stress
According to the above changes of leaf phenotype and 
leaf physiological parameters of ‘Yu Hong’, 24  h of heat 
stress was the critical duration of ‘Yu Hong’ in response 
to heat stress. So, we chose the material after 24 h of high 
temperature treatment for further iTRAQ studies.

iTRAQ screening revealed a total of 1916 proteins. 
Compared to normothermic control samples, a total of 
100 HRPs were identified under heat stress (Fig. 3).

Functional analysis of HRPs in response to heat stress
Of the 100 HRPs, 79 HRPs were categorized into 16 cate-
gories using COGs database. The largest group was Post-
translational modification, protein turnover, chaperones, 
followed by Amino acid transport and metabolism, Lipid 
transport and metabolism, Coenzyme transport and 
metabolism, Secondary metabolites biosynthesis, trans-
port and catabolism, General function prediction only, 
Translation, ribosomal structure and biogenesis, Energy 
production and conversion and Carbohydrate transport 
and metabolism (Fig. 4).

To further characterize all heat-responsive proteins, 
these HRPs identified were subjected to GO analysis. Of 
the 100 HRPs identified under heat stress, 74 HRPs were 
annotated into three groups as cellular component (159), 
molecular function (98), and biological process (132). GO 

Fig. 1 Phenotypic changes of ‘Yu Hong’ leaves under heat stress for 0, 12, 24, and 36 h, respective, indicated by A to D
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analysis showed that cell (34), cell part (33), and organelle 
(27) were the major cellular component terms; catalytic 
activity (45) and binding (44) were the dominant molecu-
lar function terms; and metabolic process (41), cellular 
process (40), and single-organism process (25) were the 
most dominant biological process terms (Fig. 5).

To further investigate the major metabolic pathways 
responding to heat stress, KEGG enrichment analysis 
was carried out with HRPs. KEGG pathway enrichment 
showed that 42 HRPs were annotated into 33 pathways. 
The protein processing pathway in endoplasmic reticu-
lum is the most, with 22 HRPs (Fig. 6).

Through the similarity comparison of the amino acid 
sequences of heat response proteins through the Protein 
Blast tool of the NCBI online website, the 100 HRPs were 
classified into eight categories, i.e., a) protein synthesis/
degradation (14), b) heat shock protein (23), c) defense 

and antioxidants (8), d) energy production and conver-
sion (9), e) signal transduction (8), f ) photosynthesis (7), 
g) metabolism (13), and h) other unknown functional 
HRPs (18) (Fig.  7). Details of HRPS can be found in 
Addendum 1.

All 23 HRPs classified as heat shock proteins were up-
regulated. Among the 14 HRPs involved in protein syn-
thesis, processing and degradation, 9 were up-regulated 
and 5 were down-regulated. There were 5 up-regulated 
and 3 down-regulated HRPs in those involved in antioxi-
dants. Among the 9 HRPs involved in energy conversion, 
5 were up-regulated and 4 were down-regulated. Among 
7 HRPs involved signal transduction, 4 were up-regulated 
and 3 were down-regulated. In metabolism there were 3 
up-regulated and 10 down-regulated HRPs. As to the 18 
HRPs with unknown functions, 2 were up-regulated, and 
16 were down-regulated (Fig. 7).

Fig. 2 Changes of physiological parameters of ‘Yu Hong’ leaves with treatment time. The physiological parameters include superoxide dismutase 
content (A), peroxidase content (B), proline content (C), malondialdehyde content (D), soluble protein content (E), and the relative electric 
conductivity (F). Different letters indicate a significant difference (p < 0.05) using Duncan’s multiple range test
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Heat stress response model
Based on the results of proteomic analyses, we compre-
hensively identified the key HRPs of tree peony and pro-
posed a heat response model of proteins in tree peony 
(Fig.  8). HRPs were divided into three levels in this 
model. The heat response protein functions were divided 
into four groups on the first level (blue) including signal 
transduction, energy conversion and metabolism, pro-
tein synthesis/degradation, and defense. The second level 
(Orange) was a further division of energy conversion and 
metabolism, and defense, among which the heat stress 
proteins and antioxidants were under defense while pho-
tosynthesis, energy conversion, and metabolism under 
energy and metabolism. The heat response proteins that 
corresponded to each functional pathway were the third 
level (green) in the model.

Discussion
Heat stress will cause an imbalance between ROS genera-
tion and antioxidant defenses, resulting in an enrichment 
of ROS in plants, which will damage plant cells and even 
inhibit plant growth and secondary metabolite induction 
[33, 34]. MDA is a lipid peroxidation product that is con-
siderably elevated if the lipids in plant cells are damaged 

[35]. Pro, SP, POD, SOD, and REC are also crucial indica-
tors of cell oxidative damage, with higher values indicat-
ing that the plant is under more severe stress [21]. Here, 
compared to 12 h of heat stress, tree peony leaves were 
on the verge of wilting at 24 h of heat stress (Fig. 1), while 
leaves were already browning and wilting at 36 h of heat 
stress (Figs.  2A, B). More importantly, all physiological 
indicators except malondialdehyde reached their high-
est levels after 24 h of heat stress, and the malondialde-
hyde content started to increase significantly after 24  h 
of heat stress. This shows that 24 h is the optimum dura-
tion of treatment for tree peony ‘Yu Hong’. The results of 
the proteomic analysis of the heat response under 24 h of 
heat stress will be discussed further below.

HRPs involved in signal transduction
Stress perception, signal transduction, and the expression 
of certain stress-related genes and metabolites all play a 
role in plant adaptation to environmental stress [36]. Sig-
nal transduction is a complex regulatory system in plants 
that plays an important role in sustaining their normal 
growth and development in response to abiotic stresses 
[37, 38]. The importance of  Ca2+ as a second messenger 
in the signal transduction pathway is well understood 
[39]. Abiotic stress causes a transitory rise in cytoplasmic 

Fig. 4 COG annotation analysis of HRPs. Frequency indicates the number of HRPs in each COG functional classification
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 Ca2+, either through exosomal inward flow or the release 
of internal reserves [40]. Calmodulin is the most well-
known  Ca2+ sensor in signal transduction, and it is 
involved in heat shock signaling [37]. Calcium-depend-
ent protein kinase is a serine/threonine protein kinase 
with c-terminal calmodulin-like structural domain at its 

c-terminus, making it both a  Ca2+ sensor and an effector 
of  Ca2+ signal transduction [39, 40]. The fact that these 
two proteins (c109749.graph_c1, c119803.graph_c0) are 
up-regulated in our study shows that they are involved 
in signal transduction mechanisms in response to heat 
stress.

Fig. 5 GO annotation of HRPs. Biological process (A), Cellular component (B), Molecular function (C)



Page 9 of 14Ma et al. Proteome Science           (2022) 20:18  

Ca2+ signaling is involved in the transport of mem-
brane proteins and vesicles in plant cells, in addition to 
directing ion transport [41]. Vesicular transport is well 
established as a key mode of communication between 
organelles in cells. Most of the vesicular transport is 
mediated by soluble N-ethylmaleimide-sensitive factor 
attachment protein receptors (SNAREs), and highlight 
fusion protein is a subfamily of SNAREs proteins [42–
44]. ABC transporter family member is also a widely 

distributed transporter protein in plants, and ABC 
functions have been shown to be involved in signal 
transduction for physiological processes such as hor-
mone transport, pathogen resistance, abiotic stressors, 
and detoxifying [45, 46]. The fact that these two pro-
teins (c116136.graph_c0, c113074.graph_c1) up-regu-
lated in our study shows that they were also involved 
in signal transduction mechanisms in response to heat 
stress.

Fig. 6 KEGG pathway enrichment of HRPs

Fig. 7 Classification of HRPs into eight categories. A, Heat shock protein; B, Protein synthesis/degradation; C, Antioxidants; D, Energy conversion; E, 
Signal transduction; F, Photosynthesis; G, Metabolism; and H, Other unknown functional HRPs
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HRPs involved in protein synthesis/degradation
Protein synthesis is inhibited by heat stress [17]. Plant 
responses to environmental stress rely heavily on 
maintaining a balance between intracellular protein 
production and breakdown [47]. A variety of proteins 
involved in protein synthesis were shown to be down-
regulated in this study, including 1 aspartate protease 
family protein (c117236.graph_c1), 1 trigger factor 
protein (c108032.graph_c0), 1 peptidine family protein 
(c117276.graph_c1), 1 subtilisin-like serine protease 
(c92427.graph_c0), and 1 protein disulfide isomerase 
(c112740.graph_c0). Interestingly, many proteins were 
also up-regulated. Ribosomes is a huge macromolecu-
lar ribosomal protein that catalyze protein synthesis in 
cells and play a vital role in cell growth, development, 
and differentiation [21]. The effectiveness and stability 
of the ribosome are directly influenced by the expres-
sion of ribosomal proteins [48]. In this study, we iden-
tified 1 40S ribosomal protein (c116290.graph_c3) and 
1 60 s ribosomal protein L26-1 (c110207.graph_c0) up-
regulation. We also discovered the up-regulated expres-
sion of 2 chaperone-protein ClpB (c103417.graph_c0, 

c118249.graph_c1) and 3 peptidylprolyl isomerase 
(c115415.graph_c1, c111758.graph_c0, c106105.graph_
c0). The most immediate hazard of heat stress is the 
misfolding of proteins, which causes loss of function 
and consequently harm [47]. So, the elimination of mis-
folded proteins is very important for protease stability 
and prevention of protein lesions [49]. The elimination 
of misfolded proteins is essential for protease stabili-
zation and prevention. PPI, a protein folding enzyme 
that catalyzes peptidyl proline cis–trans-isomerization, 
may also be involved in protein complex construction 
and disassembly, protein transport, and protein activ-
ity control [2, 47]. ClpB is a chaperone protein found 
in bacteria, fungi and plants that cooperate with other 
chaperone proteins to rescue misfolded proteins that 
have aggregated—an activity that helps cells survive 
heat shock and other stresses [50]. Furthermore, we 
discovered that the expression of 1 Ubiquitin-binding 
enzyme E2-17Ka (c104797.graph_c0) and 1 Ubiqui-
tin-like family protein (c93677.graph_c0) involved in 
the ubiquitination process had increased. The ubiq-
uitination process is a crucial step in the selective 
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Fig. 8 The model of tree peony response to heat stress. Cal, Calmodulin; CDPK, Calcium‑dependent protein kinase; ABC, ABC transporter family 
member; LHCB, Chlorophyll a / b binding protein; NDH, NADH dehydrogenase; FtsH, FtsH protease; cytP450, Cytochrome P450; CS, Citrate synthase; 
FBA, Fructose‑ 1,6‑ bisphosphate aldolase; MDH, Malate dehydrogenase; Cox, Cytochrome C oxidase; GS, Glutamine Synthetase; PAL, Phenylalanine 
ammonia lyase; ACC, Acetyl‑CoA catablerboxylase; sHSP, Small heat shook protein; HSP70, Hsp70 family protein; HSP90, Hsp90 family protein; 
POD, Peroxidase; APX, Ascorbate peroxidase; GPX, Glutathione peroxidase; CAT, Catalase; AaAER, 2‑alkenal reductase; 40S r‑protein, 40S Ribosomal 
protein; 60S r‑protein, 60 s ribosomal protein L26‑1; ClpB, Chaperone‑protein ClpB; PPI, Peptidylprolyl isomerase; E2‑17Ka, Ubiquitin‑binding enzyme 
E2‑17Ka; UBL, Ubiquitin‑like family protein
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degradation of intracellular proteins [49, 51, 52]. 
Increased expression of these proteins helps maintain 
the balance between protein production and degrada-
tion while also enhancing thermotolerance.

HRPs involved in stress defense
Heat shock protein
Plants need molecular chaperones to prevent the creation 
of misfolded proteins and maintain intracellular equilib-
rium in stressful situations [53]. HSPs are a type of molecu-
lar chaperone protein that helps plants protect themselves 
from stress and adapt to environmental changes [21, 54]. 
sHSP, HSP70 and HSP90 were all subsets of HSPs [55, 56]. 
Many studies have found that sHSP, HSP70, and HSP90 
production was linked to plant heat tolerance, and that 
overexpression improves plant heat tolerance [57–60]. Our 
research found that all 23 HSPs discovered in the study, 
including 14 sHSP (c107551.graph_c0, c117526.graph_c2, 
c120033.graph_c1, c112621.graph_c0, c117374.graph_c1, 
c112949.graph_c1, c104422.graph_c0, c100675.graph_c0, 
c116391.graph_c0, c92835.graph_c0, c110265.graph_c0, 
c94118.graph_c0, c114184.graph_c1, c114184.graph_c0), 
6 HSP70 (c119976.graph_c0, c65824.graph_c0, c110893.
graph_c1, c17729.graph_c0, c112482.graph_c0, c114151.
graph_c1), and 3 HSP90 (c101826.graph_c1, c119657.
graph_c2, c120096.graph_c0), were upregulated. They 
clearly perform a crucial role as chaperone proteins in 
the tree peony’s heat stress response.

Antioxidants
The equilibrium between the generation and scaveng-
ing of ROS is frequently disrupted by heat stress, which 
stimulates the formation of ROS, which can damage 
membrane systems and other cellular components [17]. 
Plants have evolved efficient enzymatic antioxidant sys-
tems to deal with the peroxidative damage of ROS during 
their long-term adaptive evolution [61]. POD (c100066.
graph_c1), APX (c115075.graph_c0), GPX (c114484.
graph_c0), and CAT (c116374.graph_c0), all of which are 
enzymatic antioxidants of the enzymatic antioxidant sys-
tem, were among the up-regulated antioxidant enzymes 
in this study [23, 37, 38]. In response to heat stress, up-
regulated production of these proteins is necessary for 
scavenging ROS.

Excess ROS can cause lipid oxidation, resulting 
in highly reactive lipid peroxidation-derived mol-
ecules like 4-hydroxy-2-nonenal, 4-hydroxy-2-hexe-
nal, malondialdehyde, and acrolein, which are known 
as reactive carbonyl species (RCS) [62]. RCS in high 
quantities can cause irreversible cell damage and even 
death [63]. As a result, cellular harm might result from 
poor RCS clearance of reactive carbonyl molecules. We 

found 1 up-regulated 2-alkenal reductase (c118463.
graph_c0), which detoxifies lipid-derived RCS by cat-
alyzing the conversion of unsaturated bonds (C = C) 
to saturated bonds and contributes to plant cellular 
detoxification [64, 65].

HRPs involved in energy and metabolism
Photosynthesis
Photosynthesis is the most basic physiological process 
for plant growth and development, as well as the most 
important source of energy for plant metabolism [38, 
66, 67]. Photosynthesis is frequently regarded as the 
most thermosensitive physiological process due to its 
intricate molecular mechanism and the requirement for 
several enzymes to participate in its regulation [17, 21, 
68]. When the external temperature exceeds the optimal 
adaption range of plants, photosynthesis diminishes, and 
this decline is linked to the suppression of the RuBisCO-
activating enzyme [38]. Our findings support this con-
clusion since we discovered 2 down-regulated Rubisco. 
Interestingly, 1 chlorophyll a / b binding protein (c96149.
graph_c0) [69], 1 NADH dehydrogenase (c116330.graph_
c0) [70], 1 FtsH protease (c108824.graph_c0) [71], and 
1 cytochrome P450 (c118450.graph_c0) [72] involved 
with the positive regulation of photosynthesis were also 
found and up-regulated in this study. We hypothesize 
that this is a long-evolved approach adopted by plants 
to cope with environmental stress, with the primary goal 
of maintaining photosynthetic efficiency and avoiding 
energy imbalances produced by stress.

Energy conversion
Respiration, the main metabolic pathway metabolism of 
carbohydrates, is an enzymatic oxidation reaction and 
is an important pathway for energy conversion in plants 
[37]. In this study, 1 citrate synthase (c104351.graph_c0), 
1 fructose- 1,6- bisphosphate aldolase (c41383.graph_
c0), 1 phosphoglycerate kinase (c117676.graph_c3) and 
1 Malate dehydrogenase (c112840.graph_c0) were up-
regulated, and both of them are important regulatory 
enzymes in glycolysis pathway and tricarboxylic acid 
cycle pathway in carbohydrate metabolism [73]. Pro-
moting energy conversion is also an important measure 
to cope with heat stress. Furthermore, 1 up-regulated 
cytochrome C oxidase (c119073.graph_c0) was dis-
covered in this study, which is found in the electron 
transport system of mitochondria and generates two 
molecules of water by transferring electrons to  O2−. 
Because mitochondria, but not chloroplasts, create ROS, 
defects or shortages in this enzyme can be lethal to plants 
[74, 75]. This finding shows that shielding mitochondria 
from oxidative damage produced by heat stress can aid in 
heat stress management.
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Metabolism
Heat stress, even for a short period of time, may alter 
plant metabolism, which in turn may affect plant 
responses to stress [76, 77]. Because nitrogen is a funda-
mental component of amino acid composition and serves 
a variety of other activities, it is an important factor in 
influencing plant development and stress resistance [78]. 
In this study, 1 glutamine Synthetase (c111030.graph_c0) 
and 1 phenylalanine ammonia lyase (c117414.graph_c0), 
both involved in nitrogen metabolism, were shown to 
be up-regulated [79]. This could be because under heat 
stress, inactive nitrogen metabolism can stifle amino acid 
synthesis, and a lack of specific amino acids can cause 
plant development to be thermally inhibited [78]. As a 
result, increasing nitrogen metabolism can aid in plant 
heat stress tolerance.

Fatty acids are typical ester compounds in plants that 
are classified as saturated or unsaturated depending on 
whether they include unsaturated bonds (C = C). Many 
studies have found that fatty acid desaturation is a key 
determinant of heat tolerance, possibly because unsat-
urated fatty acids may eliminate ROS and harmful 
chemicals while also improving cell membrane stabil-
ity [80–82]. We discovered 1 up-regulated acetyl-CoA 
carboxylase (c117871.graph_c2) in our work, which is 
the initiator and key to regulate fatty acid biosynthe-
sis through a series of condensation, dehydration and 
reduction reactions that can eventually desaturate or 
lengthen to produce a variety of different fatty acids 
for a variety of biological processes [83]. Thus, ACC 
helps to regulate fatty acid metabolism in response to 
heat stress.

Conclusion
In this work, to uncover the molecular mechanisms 
underlying heat resistance in the tree peony cultivar ‘Yu 
Hong’ treated with normal and high temperature, physi-
ological and proteomic changes were explored. A total 
of 100 differentially expressed proteins were identified 
as HRPs. These HRPs were found to be involved in sig-
nal transduction, protein synthesis/degradation, heat 
shock proteins, antioxidants, photosynthesis, energy 
conversion, and metabolism, according to bioinformatics 
study. Based on proteome changes, a model of tree peony 
response to heat stress was developed. In addition, other 
differentially expressed proteins with unknown functions 
were detected in this work, and their functions need to 
be confirmed in the future. Overall, our research pro-
vides valuable insights into the molecular mechanism of 
heat tolerance of tree peony, and may provide a useful 
reference for cultivating new varieties of heat resistant 
tree peony.
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