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Abstract 

Background: Transforming growth factor-beta (TGF-β) signal is an important pathway involved in all stages of liver 
hepatocellular carcinoma (LIHC) initiation and progression. Therefore, targeting TGF- β pathway may be a potential 
therapeutic strategy for LIHC. Prediction of patients’ tumor cells response requires effective biomarkers.

Methods: From 54 TGF-β-related genes, this research determined the genes showing the greatest relation to LIHC 
prognosis, and developed a risk score model with 8 TGF-β-related genes. The model divided LIHC patients from dif-
ferent datasets and platforms into low- and high-risk groups. Multivariate Cox regression analysis confirmed that the 
model was an independent prognostic factor for LIHC. The differences in genetic mutation, immune cell infiltration, 
biological pathway, response to immunotherapy or chemotherapy, and tumor microenvironment in LIHC samples 
showing different risks were analyzed.

Results: Compared with low-risk group, in the training set and test set, high-risk group showed shorter survival, 
lower stromal score and higher M0 macrophages scores, regulatory T cells (Tregs), helper follicular T cells. Moreover, 
high-risk samples showed higher sensitivity to cisplatin, imatinib, sorafenib and salubrinal and pyrimethamine. High-
risk group demonstrated a significantly higher Tumor Immune Dysfunction and Exclusion (TIDE) score, but would 
significantly benefit less from taking immunotherapy and was less likely to respond to immune checkpoint inhibitors.

Conclusions: In general, this work provided a risk scoring model based on 8 TGF-β pathway-related genes, which 
might be a new potential tool for predicting LIHC.

Keywords: TGF-β signaling pathway, Liver hepatocellular carcinoma, Tumor microenvironment, Prognosis, 
immunotherapy
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Background
In 2020, primary liver cancer was the third major cause 
resulting in cancer death worldwide, with morbidity and 

mortality rates 2–3 times higher in men than in women 
in most regions. Liver hepatocellular carcinoma (LIHC) 
is the most common primary liver cancer [1]. Although 
several staging systems, such as the Barcelona Clinic 
Liver Cancer (BCLC) system, Cancer of the Liver Italian 
Program (CLIP), TNM, Okuda, Japanese Integrated Stag-
ing (JIS) Score, have been developed to treat LIHC, but 
they all have some limitations that cannot be neglected 
[2]. The Barcelona Clinic Liver Cancer (BCLC) system, 
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which was endorsed by European and American clini-
cal practice guidelines, guides treatment choices and 
provides patients’ survival information [3]. Reasonable 
method for the diagnosis and treatment of LIHC has 
been developed, according to the BCLC stage. Appli-
cation of these methods to comprehensive projects in 
high-risk populations has shown a great effectiveness 
in preventing LIHC and reducing overall mortality [4]. 
Development of new therapies and their combinations 
for treating adjuvant and intermediate-stage disease, dis-
covery of biomarkers for therapeutic purpose could help 
treat LIHC [5].

Transforming growth factor-beta (TGF-β) signaling is 
present in initial liver injury to inflammation and fibro-
sis, to cirrhosis and LIHC [6]. During the development of 
LIHC, TGF- β has different effects on each stage of LIHC 
development. Early TGF- β inhibits liver tumorigenesis 
through inducing cell arrest and apoptosis, but once cells 
get rid of its inhibition, TGF- β develops the character-
istics of migratory tumor initiation cells and promotes 
more advanced malignant progression via inducing 
cancer cell epithelial-mesenchymal transition (EMT), 
migration, invasion and final metastasis [7, 8]. There-
fore, targeting TGF-β pathway might treat LIHC and help 
understand the potential pathogenetic mechanisms, with 
a special focus on the crosstalk between other signaling 
pathways and TGF-β [9]. Novel drugs that block TGF-β 
pathway have entered clinical evaluation, among which 
the most advanced is LY2157299, which has been con-
firmed in phase I studies to have antitumor activity in 
patients suffering from advanced LIHC through mainly 
affecting cancer cell migration and invasion [10]. In view 
of the dual role of TGF-β, there are still many factors 
hindering TGF-β inhibitors development, particularly 
patient selection, timing of treatment and predictive bio-
markers [11].

In this study, TGF-β pathway-related genes from the 
Public Molecular Signature Database v7.4 (MSigDB) [12] 
were used to study the prognostic value of their expres-
sion profile in LIHC. Based on TGF-β pathway-related 
genes, a risk score model was designed for exploring the 
differences between different risk groups among immune 
cell infiltration, genetic changes, tumor microenviron-
ment, response to immunotherapy or chemotherapy, 
function. A risk score model based on TGF-β pathway-
related genes may be a promising tool for monitoring 
LIHC.

Methods
Acquisition of TGF‑β pathway‑related genes
A gene set within TGF-β pathway with suppressing, driv-
ing or mark function were obtained from MSigDB (v7.4). 

After removing duplicates, a total of 54 TGF-β pathway-
related genes were retained for further analysis (Supple-
mentary Table S1).

Data acquisition of LIHC
LIHC data with clinical information, gene expression 
profiles and gene mutation data were acquired from three 
public databases, including The Cancer Genome Atlas 
database (TCGA, https:// portal. gdc. cancer. gov/), Gene 
Expression Omnibus database (GEO, https:// www. ncbi. 
nlm. nih. gov/ geo/) and hepatocellular carcinoma data-
base (HCCDB, http:// lifeo me. net/ datab ase/ hccdb/ home. 
html). TCGA-LIHC dataset including RNA sequenc-
ing (RNA-seq) data, gene mutation data, and clinical 
information was downloaded from TCGA database 
[13]. GSE10143 [14], GSE14520 [15] and GSE76427 [16] 
datasets containing gene expression profiles (microarray 
data) and clinical information were acquired from GEO 
database. ICGC-LIRI-JP dataset (named as ICGC (Inter-
national Cancer Genome Consortium) in the following) 
containing RNA-seq data and clinical information was 
downloaded from HCCDB.

Data preprocessing of LIHC
For LIHC samples in these datasets, samples without 
survival time, survival status or follow-up data were 
excluded. For RNA-seq data in TCGA-LIHC and ICGC 
datasets, Ensembl ID was converted to gene symbol. 
Averaged expression value was selected for one gene 
with multiple gene symbols. For gene expression pro-
files in GSE datasets, gene probes were converted to gene 
symbol. Probes targeting multiple genes were excluded. 
Averaged expression was used when multiple probes 
corresponding to one gene. Finally, after data preproc-
essing, 365 samples (130 censored and 235 uncensored, 
with the longest follow-up time of 10.0 years (only num-
bers were shown in the following)) from TCGA-LIHC 
dataset remained. 80 (32, 48, 15.6), 221 (85, 136, 5.5), and 
115 (23, 92, 6.5) samples from GSE10143, GSE14520 and 
GSE76427 datasets remained, respectively. 203 samples 
(35, 138, 5.9) from ICGC dataset (Supplementary Table 
S2) remained. TCGA-LIHC dataset was set as a training 
dataset, and the other four datasets were independent 
dataset.

Development of a prognostic gene signature
Firstly, univariate Cox regression analysis was conducted 
to determine prognosis-associated TGF-β pathway-
related genes in TCGA-LIHC dataset. Least absolute 
shrinkage and selection operator (LASSO) Cox regres-
sion analysis in glmnet (v4.1) package [17] was per-
formed to shrink the number of prognostic genes and 
construct an optimal prognostic model. LASSO allows 
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a shrinkage estimation and construction of a simplified 
model with penalty function. The coefficients of prognos-
tic genes were compressed by increasing lambda values. 
The optimal lambda value was confirmed by 95% confi-
dence interval (CI) and examined by 10-fold cross-vali-
dation. Eight prognostic genes were identified with the 
optimal lambda value. Then the prognostic model was 
developed according to the expression of each gene and 
gene coefficients obtained from LASSO Cox regression. 
The risk model was defined as: risk score = Σ (coefficient 
i*expression i), where i indicated each gene.

Next, risk score for each sample was calculated, and 
samples were stratified into low- and high-risk groups 
according to the optimal cut-off value determined by 
surv_cutpoint function in survminer (v0.4.9) R package 
(https:// cran.r- proje ct. org/ web/ packa ges/ survm iner/ 
index. html). Independent cut-off value of each dataset 
was calculated using the same algorithm. Kaplan-Meier 
survival analysis was conducted for measuring overall 
survival (OS) between high- and low-risk groups (log-
rank test was performed). The effectiveness of the model 
was evaluated by receiver operating characteristic (ROC) 
analysis in timeROC (v0.4) R package [18]. Area under 
ROC curve (AUC) was calculated for assessing the per-
formance of the prognostic model in each dataset.

Gene set enrichment analysis (GSEA)
GSEA software (v4.2.0) developed by UC San Diego and 
Broad Institute (https:// www. gsea- msigdb. org/ gsea/ 
index. jsp) was applied to further analyze enriched bio-
logical pathways of the two risk groups in TCGA-LIHC 
dataset [19]. A gene set of KEGG pathways “c2.cp.kegg.
v7.4.symbols.gmt” was downloaded from MSigDB 
(https:// www. gsea- msigdb. org/ gsea/ msigdb/ index. jsp, 
v7.4) [12]. DESeq2 (v1.34) was employed to normalize 
RNA-seq data and produce a GSEA compatible “normal-
ized counts” table in the gene cluster text (GCT) format 
[20]. Then normalized expression data grouped by risk 
groups was used as an input for conducting GSEA. Sig-
nificantly enriched pathways with P < 0.05 were consid-
ered as significant.

Gene mutation analysis for two risk groups
Gene mutation data in TCGA-LIHC dataset included 
tumor mutation burden (TMB), number of mutated 
genes, and single nucleotide variations (SNVs), which 
was already processed using mutect2 (v4.1.0.0) tool 
in The Genome Analysis Toolkit (GATK, https:// gatk. 
broad insti tute. org/ hc/ en- us/ artic les/ 36003 75938 51- 
Mutec t2) by TCGA research group [21]. Student t 
test was applied for comparing TMB and number of 
mutated genes between high- and low-risk groups. 
P < 0.05 was considered as significant. Chi-square test 

was conducted for screening significantly mutated 
genes in the two risk groups (P < 0.05). The top 10 
mutated genes were visualized by waterfall plot.

Estimation of tumor microenvironment and immune cells
RNA-seq data of TCGA-LIHC were uploaded into Cell 
type Identification By Estimating Relative Subsets Of 
RNA Transcripts (CIBERSORT, https:// ciber sort. stanf 
ord. edu/) tool to evaluate the infiltration of 22 immune 
cells in the tumor microenvironment, including naïve 
and memory B cells, seven T cell types, plasma cells, 
myeloid subsets, and natural killer (NK) cells [22]. 
The scores of these immune cells between the two risk 
groups were compared by Wilcoxon test. In addition, 
Estimation of STromal and Immune cells in MAlignant 
Tumours using Expression data (ESTIMATE, v1.0.13) 
package was introduced to calculate ESTIMATE score, 
stromal score, and immune score, through indicating 
the fraction of immune and stromal cells in tumor sam-
ples using gene expression signatures [23].

Prediction of immune/chemotherapy response
Based on modeling tumor immune evasion mecha-
nism, the response to immunotherapy could be pre-
dicted by Tumor Immune Dysfunction and Exclusion 
(TIDE) tool [23]. To initially evaluate the response of 
two risk groups in the TCGA-LIHC dataset to immu-
notherapy, the TIDE algorithm was used. To further 
measure the response of each risk group to immuno-
therapy, we used subclass mapping (SubMap) analysis 
for comparing anti-programmed cell death ligand 1 
(PD-L1) therapy response of the IMvigor210 dataset 
with that of TCGA-LIHC [24]. Furthermore, the half 
maximal inhibitory concentration (IC50) value of five 
chemotherapy or targeted drugs (imatinib, sorafenib, 
cisplatin, salubrinal and pyrimethamine) [25] for 
each sample in TCGA-LIHC dataset was evaluated by 
pRRophetic package [26].

Statistical analysis
R software (v4.1) was employed for all statistical analy-
sis. Survival R package (https:// mran. micro soft. com/ 
web/ packa ges/ survi val/ index. html) was utilized to per-
form Kaplan-Meier survival analysis, univariate and 
multivariate Cox regression analysis (log-rank test was 
conducted). The association of seven metagenes with the 
risk score was assessed by Pearson correlation analysis 
[27]. Differences between the two risk groups were ana-
lyzed by Wilcoxon test or student t test (indicated in the 
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figure legends). If not specified, P < 0.05 was considered 
as significant.

Results
Development of the prognostic model
The univariate Cox regression analysis of 54 TGF- β 
pathway-related gene was carried out with TCGA-
LIHC dataset as training set to identify the prognos-
tic TGF- β pathway-related genes in LIHC. The results 
showed that the expression levels of 22 TGF-β path-
way-related genes were significantly correlated with 
the OS of LIHC. Then LASSO Cox regression analy-
sis was performed to screen the most stable prognostic 
genes from the 22 TGF-β pathway-related genes. Par-
tial likelihood deviance was the minimum when 8 vari-
ables were included in the model (Fig.  1A, B). Finally, 
TGF-β pathway risk score formula was constructed, 
according to 8 TGF-β pathway-related genes as risk 
score = 0.073*CDKN1C + 0.18*HDAC1 + 0.035*SER-

PINE1 + 0.068*BMP2–0 .37 2*E N G  +  0.3 92*FKBP1A + 0.
481*NOG + 0.279*BCAR3. This formula was introduced 
to calculate the risk score of TCGA-LIHC samples and 
effectively distinguished the survival status of patients 
with different risks (Fig. 1C). 51 samples and 314 samples 
were classified into high- and low-risk groups, respec-
tively, based on the optimal cut-off value (Supplementary 
Table S3). High-risk scored patients showed a signifi-
cantly more unfavorable prognosis than patients with 
low-risk scores (Fig. 1D). For TCGA-LIHC dataset, AUC 
of risk score for predicting 1-year, 3-year, and 5-year OS 
was 0.76 0.71, and 0.70, respectively (Fig. 1E).

Validation of the prognostic model in the GEO and ICGC 
datasets
To analyze the robustness of the model established 
based on TCGA-LIHC dataset, the risk scores of 
the samples were calculated by the same risk score 

Fig. 1 Development of the prognostic model with 8 TGF-β pathway-related gene in TCGA-LIHC dataset. A LASSO Cox regression analysis on 22 
TGF-β pathway-related genes. The coefficients of genes closed to zero with the increasing lambda value. Dashed red line indicates the optimal 
lambda value = 0.0372 for constructing an optimal model with the least number of genes. B 95% CI of partial likelihood deviance under different 
lambda values evaluated by cross-validation. Red dot indicates the lambda value corresponding with the optimal model. The left (green dots) and 
right (blue dots) of the red dot indicate the lambda values with the decreasing and increasing number of genes respectively. C The distribution of 
samples with different survival status, and expression of eight prognostic genes for each sample ranking by risk score from low to high. Censored 
and uncensored indicate dead and alive status respectively. Horizontal axis indicates samples. Z-score of expression from green to red indicates low 
to high expression. D Kaplan-Meier survival curve of low- and high-risk groups classified by the prognostic model. Log-rank test was conducted. E 
ROC and AUC of the prognostic model in predicting 1-year, 3-year and 5-year OS. CI, confidence interval. HR, hazard ratio. ROC, receiver operation 
characteristic. AUC, area under ROC curve
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formula. GSE14520, GSE76427, GSE10143 and ICGC 
were the external validation datasets. According to 
optimum cut-off values, LIHC samples in each data-
set were grouped into two risk groups (Supplemen-
tary Table S3). Samples classified as high-risk were 
more likely to be in a death status, as demonstrated 
by the survival analysis of the samples in each data-
set (Fig.  2A). The ROC curve showed that the prog-
nostic model had a 3-year AUC values of 0.7 in 
GSE14520, 0.64 in GSE76427, 0.51 in GSE10143 and 
0.75 in ICGC (Fig. 2B). Correlation of the OS of LIHC 
with the risk score of each dataset was also assessed 
by univariate Cox regression, and the risk score was 

found to be closely linked with OS in all the five data-
sets (Fig. 2C).

Genetic variation and functional enrichment analysis 
of the prognostic risk model
Between the high- and low-risk groups, statistical anal-
ysis of TMB and nucleotide variation was not signifi-
cantly different in TMB or nucleotide variation (Fig. 3A, 
B). In these two risk groups, single nucleotide varia-
tions in genes with the top 10 mutation frequencies were 
exhibited in Fig.  3C. The highest mutation frequency 
was present in TP53, the mutation rate of which was 
much higher than CSMD1 showing the second highest 

Fig. 2 Verification of the prognostic model in GEO and ICGC datasets. A Kaplan-Meier survival curves of low- and high-risk groups in GSE14520, 
GSE76427, GSE10143, and ICGC datasets. B ROC analysis for evaluating the performance of the prognostic model in GSE14520, GSE76427, 
GSE10143, and ICGC datasets. C Univariate Cox regression analysis on the relation between risk score and prognosis in TCGA-LIHC, GSE14520, 
GSE76427, GSE10143 and ICGC datasets. Log-rank test was conducted. CI, confidence interval. HR, hazard ratio

(See figure on next page.)
Fig. 3 Gene mutation features and gene set enrichment analysis in TCGA-LIHC datasets. A‑B Comparison of TMB (A) and number of mutated genes 
(B) between low- and high-risk groups. Student t test was conducted. C The waterfall diagram visualizing the top 10 mutated genes in the two risk 
groups (P < 0.05). Chi-square test was performed. D Enriched four KEGG pathways in low-risk group assessed by gene set enrichment analysis. TMB, 
tumor mutation burden. ES, enrichment score. NES, normalized enrichment score. FDR, false discovery rate. ns, no significance



Page 6 of 13Liao et al. Proteome Science           (2022) 20:11 

Fig. 3 (See legend on previous page.)
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mutation frequency. GSEA on the two risk groups in 
TCGA-LIHC dataset revealed that metabolism-related 
pathways, including primary bile acid biosynthesis, fatty 
acid metabolism, retinol metabolism, and drug metabo-
lism cytochrome P450, were significantly enriched in 
low-risk group, suggesting that the risk model can predict 
patient survival by reflecting LIHC metabolism (Fig. 3D).

Correlation between risk score and clinical features
In different subgroups, risk scores stratified by M stage, 
gender, age, N stage, American Joint Committee on Can-
cer (AJCC) stage, grade, T stage were compared. High-
risk scored patients were more likely to be those with a 
more advanced T stage (P = 1.1e-05), and a high histo-
logical grade (P = 6e-07) and AJCC stage (P = 9.3e-06) in 
comparison with those showing low-risk scores (Fig. 4A). 
In addition, samples could be significantly stratified into 
the two risk groups of different clinical features, includ-
ing gender (male and female), T stage (T1–2 and T3–4), 
age (age > 60 and age ≤ 60), AJCC stage (stage I-II and 
stage III-IV), and M stage (M0 stage), N stage (N0 stage) 
and grade (G1-G2 and G3-G4) (Fig. 4B). The LIHC sam-
ples showing a high-risk had generally significantly worse 
OS than low-risk patients, indicating that the risk model 
had strong predictive ability (Fig. 4B). Risk score, AJCC 
stage, T stage were noticeably associated with LIHC 
prognosis, as shown by univariate Cox regression analy-
sis (Fig. 5A). After controlling confounding factors, mul-
tivariate Cox regression study demonstrated that the risk 
model was the only independent prognostic factor for 
LIHC (Fig. 5B).

Tumor microenvironment and immune cells in each risk 
group
To better understand the immune microenvironment 
traits associated with the risk model developed based on 
8 TGF-β pathway-related genes, the ESTIMATE, stromal 
and immune scores of each risk group were calculated by 
ESTAMATE. Stromal score was significantly lower in the 
high-risk group than low-risk group, while ESTIMATE 
score and immune score of the two risk groups showed 
no significant difference, suggesting that the high-risk 
group had a relatively low stromal component (Fig. 6A-
C). Moreover, the difference analysis on the composi-
tion of 22 immune cells in the tumor microenvironment 
between the two risk groups demonstrated a signifi-
cant difference in 9 immune cells (Fig. 6D, E). High-risk 
group showed a higher infiltration of helper follicular T 
cells, M0 macrophages, and regulatory T cells (Tregs), 
while resting memory CD4 T cells, monocytes, rest-
ing mast cells, M1 macrophages were more significantly 
enriched in low-risk group (Fig. 6E). Because of the link-
age effect between cancer immunity and inflammation, 7 

metagenes (including 105 genes related to inflammation 
and immune functions) was selected to calculate enrich-
ment score by single sample gene set enrichment analysis 
(ssGSEA) in gene set variation analysis (GSVA) package. 
Risk score was negatively correlated with interferon and 
MHC- I (R = − 0.2 and − 0.14, respectively) but posi-
tively correlated with IgG (R = 0.25), as shown by corre-
lation analysis (Fig.  6F). Although the correlations were 
not strong, a significant difference of ssGSEA score was 
shown on IgG, interferon, and MHC-I between the two 
risk groups in a boxplot (P < 0.05, Fig. 6G).

Risk model based on 8 TGF‑β pathway ‑related genes 
could predict the clinical response of immunotherapy/
chemotherapy
Between the two risk groups, the difference in the score 
of infiltrating immune cell populations in tumor micro-
environment indicated that the response of each risk 
group to immunotherapy required further exploration. 
The TIDE algorithm was utilized to analyze the response 
rate of immunotherapy of the two groups (Fig. 7A). Low-
risk patients had significantly higher remission after tak-
ing immunotherapy than the high-risk. Moreover, TIDE 
score of low-risk patients was greatly lower (Fig.  7B). 
From the Submap analysis, it could be found that the 
low-risk group was more likely to respond to anti-PD-
L1 treatment (Fig. 7C). The cisplatin, imatinib, sorafenib, 
salubrinal and pyrimethamine treatment-related IC50 
in TCGA-LIHC samples was estimated to evaluate the 
sensitivity of the two risk groups to these drugs, and we 
found that high-risk LIHC samples were more sensitive 
to the above five drugs (Fig. 7D-H).

Discussion
It is widely acknowledged that LIHC treatment is chal-
lenging for its high possibility of drug resistance. The 
development of clinically validated agents against LIHC 
has been significantly influenced by the complex interac-
tions of liver tumors with their immune microenviron-
ment and a lack of understanding of the heterogeneous 
mechanisms of LIHC tumorigenesis and progression 
[28]. Several studies have shown that dysregulated sig-
nals in the TGF-β pathway have important function in 
immune regulation in the LIHC microenvironment [8, 
11]. Therefore, TGF-β pathway-targeted drugs, includ-
ing drugs targeting TGF-β ligands, TGF-β receptors, and 
downstream mediators of TGF-β, have been explored and 
clinically tested. And all of those drugs can lead to a vari-
ety of synergistic downstream effects and may improve 
the clinical outcome of LIHC [29, 30]. At present, effec-
tive biomarkers should be discovered to help determine 
the response of tumor cells for LIHC patients [31].
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Fig. 4 Correlation between risk score and clinical features in TCGA-LIHC dataset. A Comparison of risk score difference between different clinical 
features including ages, genders, T stage, N stage, M stage, AJCC stage I-IV, and grade. Wilcoxon test or Kruskal-Wallis test were conducted (No test 
was performed in N and M stages as insufficient samples). B Kaplan-Meier survival analysis on low- and high-risk groups classifying by different 
clinical features. Log-rank test was performed
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This work developed a risk score model based on 8 
TGF-β pathway-related genes through progressively 
screening 54 TGF-β pathway-related genes, which can 
score and group LIHC samples in independent datasets. 
Chen et  al. found that about 40% of all LIHC samples 
showed at least one gene mutation in the TGF-β pathway 
[32]. In the high- and low-risk groups, TP53 was both 
identified to have the highest mutation frequency, which 
has been identified as a common molecular event in 
human liver cancer [33]. Previous studies have suggested 
that with the continuous acquisition of genomic muta-
tions, tumor cells show a series of mutations in different 
signal pathways, resulting in changes in TGF- β response 
[34]. This also explained the function of TGF-β in the late 
stage of tumor was quite different from that in the early 
stage. In addition, GSEA showed that two risk groups 
had differential enriched pathways such as metabolism-
related pathways like fatty acid metabolism, and drug 
metabolism were more enriched in low-risk group, which 
may be resulted from their differential mutation patterns 
in TP53 and metabolism-related genes.

A number of evidences show that TGF-β can modulate 
cellular responses that regulate the tumor microenviron-
ment, which may also contribute to LIHC progression 
and drive immune escape of cancer cells [31]. On the 
comparison of tumor microenvironment and immune 
infiltration between two risk groups, we found that high-
risk group had relatively higher enrichment of helper 

follicular T cells, Tregs and M0 macrophages. The pre-
vious study speculated that increased number of these 
immunosuppressive cells endowed high-risk group a 
strong immunosuppressive environment, leading to an 
unfavorable prognosis [34]. Importantly, two risk groups 
showed significantly different response to immunother-
apy, where TIDE score of low-risk group was noticeably 
lower and responsive proportion was significantly higher, 
suggesting that low-risk group may be more responsive 
to anti-PD-L1 treatment. However, high-risk group was 
more sensitive to chemotherapeutic drugs or targeted 
drugs including cisplatin, imatinib, sorafenib and salu-
brinal and pyrimethamine. These observations suggested 
that the prognostic model had a potential in guiding 
immunotherapy or targeted therapy for LIHC patients.

Eight prognostic genes (CDKN1C, HDAC1, SERPINE1, 
BMP2, ENG, FKBP1A, NOG, and BCAR3) involved in 
TGF-β pathway were included in our prognostic model. 
We found that some of them were also identified as prog-
nostic biomarkers for cancers by the previous studies. 
Cyclin-dependent kinase inhibitor 1C (CDKN1C, also 
known as p57(KIP2)), a tumor suppressor, could regulate 
tumor cell differentiation, invasion, and angiogenesis, 
which is also validated as a prognostic biomarker in vari-
ous cancer types, including in LIHC [35, 36]. In a 7-gene 
hypoxia signature developed by Bai et al., CDKN1C has 
also been identified as a prognostic gene for predicting 
LIHC prognosis [37]. Histone deacetylase 1 (HDAC1) 

Fig. 5 Univariate (A) and multivariate (B) Cox regression analysis for risk score and clinical features including age, gender, T stage, stage, and grade 
in TCGA-LIHC dataset. Log-rank test was performed. CI, confidence interval. HR, hazard ratio
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is a critical enzyme for epigenetic modification, whose 
overexpression is strongly correlated with tumor cell pro-
liferation and growth in many cancers [38]. High expres-
sion of HDAC1 is significantly associated with elevated 
cancer-specific mortality in LIHC [39]. Plasminogen 

activator inhibitor 1 (SERPINE1, also known as PAI-1), 
is considered as a prognostic biomarker for gastric can-
cer, gliomas, and colorectal cancer [40–42], hepatocel-
lular carcinoma [43]. SERPINE1 was also in an 8-gene 
prognostic by Lin et  al [44] High expression of bone 

Fig. 6 Evaluating the difference of immune features between low- and high-risk groups in TCGA-LIHC dataset. A‑C Stromal score, immune score 
and ESTIMATE score of two risk groups. Student t test was conducted. D A barplot presenting the distribution of nine immune cell types with 
significant difference between two risk groups (P < 0.05). E Comparison of enrichment score of nine immune cell types between two risk groups. 
Student t test was conducted. F Pearson correlation analysis between risk score and ssGSEA score of nine metagenes. Red indicates negative 
correlation and blue indicates positive correlation. G SsGSEA score of seven metagenes in low- and high-risk groups. ns, no significance. *P < 0.05, 
**P < 0.01, ***P < 0.001, ****P < 0.0001
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morphogenetic protein 2 (BMP2) could promote liver 
cancer cell growth through activating myeloid-derived 
suppressor cells [45]. Other four prognostic genes were 
less reported in LIHC research.

The 8-gene prognostic model manifested favorable 
performance in different datasets, except in GSE10143 
dataset with an unsatisfied AUC. Nevertheless, our 
model still outperformed other present prognostic mod-
els for LIHC in the same datasets (TCGA-LIHC and 
ICGC). 1-year, 3-year and 5-year AUC were 0.76, 0.71 
and 0.70 in TCGA-LIHC dataset, respectively. 1-year, 
3-year and 4-year AUC were 0.76, 0.75 and 0.64 in ICGC 
dataset, respectively. We included some studies con-
taining at least one prognostic gene as our model. Sun 
et  al. established a 2-gene prognostic model (CANX 
and HDAC1) for LIHC based on immune-related and 
autophagy-related genes using TCGA-LIHC and ICGC 
datasets [46]. The AUC of the 2-gene prognostic model 
for 1-year, 3-year and 5-year was 0.696, 0.639 and 0.642 
in TCGA training dataset, 0.728, 0.685 and 0.612 in 
TCGA test dataset, 0.757, 0.669 and 0.644 in ICGC 
dataset, respectively. Lin et  al. constructed an 8-gene 
prognostic model (SLC7A1, RIPK2, NOD2, ADORA2B, 
MEP1A, ITGA5, P2RX4, and SERPINE1) based on 
inflammatory response-related genes for LIHC also 

utilizing TCGA-LIHC and ICGC datasets [44]. The AUC 
of Lin et  al’s model for predicting 3-year OS was 0.614 
and 0.710 in TCGA-LIHC and ICGC datasets, respec-
tively [44]. Compared with other prognostic models, our 
model was validated in more datasets, while they only 
validated their models in ICGC dataset.

This study had some limitations. Firstly, all the data 
were retrospective data, and experiments were not 
designed to verify them from other aspects. Secondly, 
our analysis was only based on TGF-β pathway-related 
genes, and the results did not represent all LIHC-related 
gene profiles. Thirdly, algorithms for characterizing 
tumor microenvironment, such as ESTIMATE and CIB-
ERSORT, are not always accurate due to the atypical or 
unclear tumor microenvironment varying by tumor 
types. There was a possibility that an overlap of some 
gene signatures may exist between stromal cells and 
tumor cells because of the influence of epithelial-to-
mesenchymal transition (EMT). In the future, the scope 
of research should be further expanded and experimental 
studies should be carried out to analyze the risk model 
based on TGF-β pathway-related genes on LIHC patho-
logical behavior.

Fig. 7 The predictive value of the prognostic model for immunotherapy and chemotherapy in TCGA-LIHC dataset. A The proportion of false and 
true responders in low- and high-risk groups analyzed by TIDE. False and true indicate non-responsive and responsive to immune checkpoint 
blockade. ANOVA test was performed, and P values transferred as –log10 (P value) were shown in the upper box. B Comparison of TIDE score 
between the two risk groups. Student t test was performed. C Submap analysis for analyzing the similarity between non-treated samples and 
anti-PD-1 treated samples. Bonferroni corrected P values were indicated in the box. D‑H Estimated IC50 values of cisplatin (D), imatinib (E), sorafenib 
(F), salubrinal (G) and pyrimethamine (H) in two risk groups. Student t test was performed. PD, progressive disease. SD, stable disease. PR, partial 
response. CR, complete response. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001
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Conclusions
In conclusion, a risk score model with stepwise analysis 
of 54 TGF-β pathway-related genes in TCGA-LIHC was 
developed, which can independently predict the LIHC 
prognosis and was related to the response to immuno-
therapy or chemotherapy, immune cell infiltration, tumor 
microenvironment. This study provided a perspective to 
elucidate LIHC clinical outcomes from the perspective of 
TGF-β pathway-related genes, offering novel possibility 
for improving LIHC management.
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