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Abstract

Background: Tuberculosis (TB) is one of the world’s most problematic infectious diseases. The pathogen
Mycobacterium tuberculosis (Mtb) is contained by the immune system in people with latent TB infection (LTBI). No
overt disease symptoms occur. The environmental and internal triggers leading to reactivation of TB are not well
understood. Non-tuberculosis Mycobacteria (NTM) can also cause TB-like lung disease. Comparative analysis of
blood plasma proteomes from subjects afflicted by these pathologies in an endemic setting may yield new
differentiating biomarkers and insights into inflammatory and immunological responses to Mtb and NTM.

Methods: Blood samples from 40 human subjects in a pastoral region of Ethiopia were treated with the ESAT-6/
CFP-10 antigen cocktail to stimulate anti-Mtb and anti-NTM immune responses. In addition to those of active TB,
LTBI, and NTM cohorts, samples from matched healthy control (HC) subjects were available. Following the
generation of sample pools, proteomes were analyzed via LC-MS/MS. These experiments were also performed
without antigen stimulation steps. Statistically significant differences using the Z-score method were determined
and interpreted in the context of the proteins’ functions and their contributions to biological pathways.
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Results: More than 200 proteins were identified from unstimulated and stimulated plasma samples (UPSs and SPSs,
respectively). Thirty-four and 64 proteins were differentially abundant with statistical significance (P < 0.05;
Benjamini-Hochberg correction with an FDR < 0.05) comparing UPS and SPS proteomic data of four groups,
respectively. Bioinformatics analysis of such proteins via the Gene Ontology Resource was indicative of changes in
cellular and metabolic processes, responses to stimuli, and biological regulations. The m7GpppN-mRNA hydrolase
was increased in abundance in the LTBI group compared to HC subjects. Charged multivesicular body protein 4a
and platelet factor-4 were increased in abundance in NTM as compared to HC and decreased in abundance in NTM
as compared to active TB. C-reactive protein, α-1-acid glycoprotein 1, sialic acid-binding Ig-like lectin 16, and
vitamin K-dependent protein S were also increased (P < 0.05; fold changes≥2) in SPSs and UPSs comparing active
TB with LTBI and NTM cases. These three proteins, connected in a STRING functional network, contribute to the
acute phase response and influence blood coagulation.

Conclusion: Plasma proteomes are different comparing LTBI, TB, NTM and HC cohorts. The changes are augmented
following prior blood immune cell stimulation with the ESAT-6/CFP-10 antigen cocktail. The results encourage
larger-cohort studies to identify specific biomarkers to diagnose NTM infection, LTBI, and to predict the risk of TB
reactivation.
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Background
Tuberculosis (TB) is an ancient disease caused by bac-
teria of the Mycobacterium tuberculosis complex (Mtb)
and continues to be an urgent public health problem. In
2016 alone, 10.4 million new infections and 1.7 million
deaths were reported [1]. The host immune response
mechanisms are not well understood despite decades of
research, and the improvement of diagnostics, therapeu-
tics, and vaccines remain biomedical priorities world-
wide. To develop better diagnostics, molecular
biomarkers, and methods to discover them need to be
identified [2]. Using blood plasma from active TB, latent
TB infection (LTBI), and healthy control (HC) subjects
as sample sources, shotgun proteomic comparisons may
lead to new biomarkers, yield information on mecha-
nisms underlying differences in disease outcomes and
contribute to future strategies to prevent and treat TB.
Non-tuberculosis Mycobacteria (NTM) are environ-

mental microorganisms that belong to the genus Myco-
bacterium. NTM can cause lung disease in humans
clinically similar to TB [3] but is often treated differently
[4]. Previous exposure to NTM reduces the efficacy of
the BCG vaccine [5, 6]. Infection with NTM results in a
false negative value using the purified protein derivative
(PPD) test. Conventional diagnosis of TB and NTM de-
pends on culturing the bacteria in specific growth media,
but culture-based identification methods in conjunction
with biochemical tests are slow and do not adequately
speciate the pathogens [7]. More rapidly measurable bio-
markers that differentiate NTM from Mtb infections and
corresponding diagnostic assays with high measurement
sensitivity and specificity are clinically valuable. Such
diagnostic tests may benefit approaches for therapeutic
intervention and pathogen transmission control [8].
Laboratory methods to identify Mycobacteria from clin-
ical specimens begin to result in faster and more accur-
ate identification of NTM strains [4]. Research that
advances diagnostic capabilities for NTM infections is
important because the incidence of NTM infections ap-
pears to increase, and the level of protection of BCG-
vaccinated individuals against such infections is low [9].
Major challenges of conventional biomarker discovery

research are limited insights into disease mechanisms
and high dependence on cohort design, sample type,
analytical and statistical approaches. In the TB context,
for example, Gerhard et al. [10] stated that the assess-
ment of the risk of infection versus protection from TB
should include data-driven methods, such as global
‘omics’ screens, in addition to the generation and inter-
pretation of immunological profiles. For example, the
measurement of multiple cytokines from individual pa-
tients selectively applied to distinct T-cell populations
likely is more informative to distinguish LTBI from ac-
tive TB than the measurement of a single cytokine from
pools of T-cells. Confounding factors for successful bio-
marker discovery are high diversity within cohorts with
respect to socio-demographics, genetics, and medical
history and the reliance on single as opposed to multiple
analyte measurement time points. Prior courses of anti-
TB drug treatment and other medications used by pa-
tients also influence susceptibility to infection and dis-
ease severity. With respect to ‘omics’ screens, it was
reported that transcriptional signatures distinguish active
TB from LTBI [11, 12] and can predict the progression
of LTBI to active TB [13]. Translating such signatures
into diagnostic tests can be challenging. mRNAs have
high turnover rates. Preserving the analytes prior to
measurement can be technically difficult, especially in a
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resource-poor setting. Since proteins are more stable
analytes and can be measured with good quantitative ac-
curacy in a highly parallel manner from clinical sample
sources (e.g. body fluids), proteomics is a promising
technique to discover biomarkers that distinguish out-
comes of disease or predict the risk of disease onset or
severity [14, 15]. Blood plasma is a common source of
specimens.
Proteomic surveys to identify blood plasma or serum

biomarkers for TB and antibiotic treatment outcomes
were applied to different cohorts and generated variable
results. Unstimulated plasma samples (UPS) have been
used to compare proteomic data from active TB and HC
cohorts [16, 17]. Blood plasma samples stimulated with
TB-specific antigens (SPS) [18] have been used to dis-
cern latency from the active disease in a high TB burden
country [19]. Antigens commonly used to elicit TB-
specific immunological responses in the blood are
ESAT-6 and CFP10. They are the basis of Interferon
Gamma Release Assays (IGRA) to diagnose LTBI. It was
reported that the BCG vaccine strain and most NTM
strains do not harbor the ESAT-6 and CFP10 antigens,
leading to different immune cell responses to ESAT-6
exposure [20, 21]. Important objectives are to
characterize the utility of IGRAs for the differential diag-
nosis of NTM infections and to assess whether TB la-
tency elicits immune and metabolic changes other than
the release of IFN-γ. Chegou et al. used the IGRA assay
product QuantiFERON-TB to measure proteins in blood
stimulated with TB antigens, but did not conduct the
study in comparison to a HC cohort [22]. To our know-
ledge, our study is the second one to investigate plasma
proteomic profiles from patients with pulmonary TB
compared to LTBI using UPSs [23] and the first one to
use mass spectrometry-based proteomics that also in-
cludes SPSs as a sample source. We intended to gain in-
sights into plasma proteome differences using two types
of samples (UPSs and SPSs) from four distinct cohorts
(HC, active TB, LTBI, and NTM) and identify prelimin-
ary protein biomarkers that discern the pathologies.

Materials and methods
Study subjects and data collection
Patients with active pulmonary TB were recruited from
local clinics caring for TB patients in selected districts in
the South Omo Zone. Blood samples were collected
from patients with pulmonary TB before treatment initi-
ation. LTBI and healthy controls (HC) were recruited
from the same districts and screened using the
QuantiFERON-TB Gold In-Tube test (QFT-IT) as de-
scribed in a previous study [24]. Clinical data were col-
lected to rule out the possibility that the control and
LTBI groups had clinical signs and symptoms of other
respiratory diseases [25]. The active TB group was
identified using a standard smear microscopy test for
acid-fast bacilli and the mycobacterial culture method.
Genus typing was done using DNA amplification in a
single tube, in addition to culture-positive results, to
categorize taxa into Mtb and NTM [26]. Individuals who
had complications attributable to malignancies, auto-
immune diseases, or HIV co-infection were excluded
from the study.
Blood samples were collected from 40 enrolled partici-

pants (10 each for the cohorts HC, LTBI, active TB, and
NTM) into vacutainer tubes (Becton Dickinson, Franklin
Lakes, NJ, USA) without anticoagulant and allowed to
clot at room temperature for 1 h. The clotted samples
were centrifuged at 1500×g for 10 min to separate the
soluble fraction (serum). Sera were immediately ali-
quoted into sterile tubes and stored at −80оC prior to
further use. Whole blood samples were collected in par-
allel and stimulated with ESAT-6/CFP-10 cocktail anti-
gens as previously described [24]. Briefly, 1 mL of
heparinized whole blood was diluted in RPMI 1640
medium containing L-glutamine (Sigma) supplemented
with penicillin, 100 U/ml, and streptomycin, 100 μg/ml
(Sigma) to a final dilution of 1:10. This ESAT-6/CFP-10
cocktail was used to stimulate whole blood at a final
concentration of 10 μg/ml. For positive and negative
controls, phytohemagglutinin antigen (PHA) at 10 μg/ml
(Sigma) and RPMI 1640 media were used, respectively.
After 48 h of incubation at 37 °C with 5% CO2, superna-
tants were harvested and stored at − 80 °C until further
use. Sample preparation for proteomics pertained to the
generation of sample pools (ten samples of equal vol-
umes in a given plasma sample pool). There were eight
plasma pools: HC, LTBI, active TB, and NTM group,
each with two sample types (UPS and SPS).

Depletion of high-abundance plasma proteins
Each UPS and SPS sample pool was subjected to immu-
noaffinity depletion of 11 abundant human plasma pro-
teins using a chromatographic matrix. This matrix
consisted of a pool of modified POROS-A resins, each
containing covalently immobilized polyclonal antibodies.
This matrix was used in a batch mode to bind and elute
protein and removed up to 95% of each protein. Deple-
tion efficiency varied based on (1) polyclonal antibody
specificity, (2) stability and retention of antibodies on
the recycled matrix, and (3) target protein solubility in
the cycle of binding at neutral pH and elution at pH 2.2.
The affinity targets were: IgG (which binds to the
Staphylococcus aureus protein A directly bound to the
product POROS A), albumin, antitrypsin, IgA, transfer-
rin, haptoglobin, fibrinogen, alpha-2-macroglobulin,
IgM, apolipoprotein AI, apolipoproteinAII, complement
factor C3, and transthyretinas previously described [27].
The total protein concentration of the flow-through
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plasma fraction from the resin was determined by the
Bradford assay technique and SDS-PAGE gel electro-
phoresis. Filter aided sample preparation (FASP) [28]
using a 30 kDa cutoff filter was used for digestion with
minimal modifications [29]. Using approximately 50 μg
total plasma protein, tryptic digestion was followed by
peptide desalting via the spinnable Stage Tip protocol
[30]. Dried peptides were resuspended in 20 μl solvent A
(0.1% formic acid in water) for LC-MS/MS analysis.

LC-MS/MS and proteomic data analysis
LC-MS/MS experiments were performed using an Ul-
timate 3000-nano LC system coupled to a Q-Exactive
mass spectrometer (Thermo Scientific). The experimen-
tal and data acquisition methods were previously de-
scribed in detail [29]. Briefly, peptides were separated
over a 150 min gradient from 2 to 80% (120 min to 35%,
10 min to 80%) in solvent B (0.1% formic acid in aceto-
nitrile) at a flow rate of 200 nl/min in an in-house
packed column (75 μmx 18 cm, 3.0 μm ReproSil-Pur
C18-AQ). The MS survey scans were acquired at a reso-
lution of 70,000 over a mass range of m/z 250–1,800
with an automatic gain control (AGC) target of 1e6. The
maximum injection time (IT) was 30ms. In each cycle,
the ten most intense ions were subjected to high-energy
collisional dissociation (HCD) applying normalized colli-
sion energy of 27%. The MS/MS scans were performed
at a resolution of 17,500. The AGC target was set to 2e5
and the maximum IT was 150 ms. Charge exclusion in-
cluded + 1 and + 5 or more. Dynamic exclusion of re-
peated MS1 peaks was enabled (exclusion from MS/MS
after 20 s). Pooling technical LC-MS/MS replicates, the
MS raw data files were processed using the Sequest HT
algorithm integrated into the Proteome Discoverer soft-
ware analysis platform (version 1.4, Thermo Scientific).
A database that contained protein sequences from the
Mtb strain ATCC 25618 / H37Rv (7,955 sequences) and
a non-redundant human proteome database subset (20,
195 sequences; reviewed sequences only; version 2015_
06) obtained from the UniProt knowledgebase was used
to computationally identify peptides and proteins. Search
parameters included (1) two missed tryptic cleavages, (2)
oxidation (M), protein N-terminal acetylation and dea-
midation (N, Q) as variable modifications, and (3) carba-
midomethylation (C) as a fixed modification. The
minimum peptide length was seven amino acids. MS
and MS/MS ion Proteome Discoverer tolerances were
set at 10 ppm and 0.02 Da, respectively. The FDR was es-
timated using the integrated Percolator tool. Only pro-
tein hits identified with a 1% FDR threshold were
accepted. For protein quantification, the MaxQuant and
Andromeda software suite (version 1.4.2.0) was used.
We accepted most of the default settings provided in
this software [31]. A 1% FDR was set at both the peptide
and protein level. The MaxLFQ algorithm generates
relative quantification values using the integrated MS1
peak areas from high-resolution MS data [32]. The clus-
tering and correlation analyses were performed in the
Perseus environment (version 1.5.0.15) using embedded
functions [33]. Before analysis, the LFQ intensities gen-
erated by MaxQuant were log (base 2) transformed, and
then imputed with missing values by default settings in
Perseus. LC-MS/MS data were deposited to the Prote-
ome Xchange Consortium via the PRIDE partner reposi-
tory with the dataset identifier PXD012412. Detailed
data on protein/peptide identifications are provided in
Supplemental Data, Dataset S1.
Bioinformatics and statistical analysis
Differences in protein abundance among the active TB,
LTBI, NTM, and healthy subject cohorts were compared
by one-way analysis of variance (ANOVA) using the
IBM SPSS software version 20. Multiple comparisons
were performed using the least significant difference
(LSD) post-hoc test when the variance between samples
was equal or the Dunnett’s T3 test and when the vari-
ances were not equal. The independent-sample t-test
was used to identify differences in relative analyte abun-
dance levels comparing active TB with the combination
of the other three groups. Comparisons of data pertain-
ing to SPSs (stimulated) and UPSs (unstimulated sam-
ples) in the assays were performed using a paired-
sample t-test. P-values < 0.05 were considered statisti-
cally significant. The Perseus 1.5.0.15 software was used
for graphing heat maps. Cellular component, molecular
function, and biological process categories were assigned
using the Gene Ontology Resource (http://www.geneon-
tology.org/). Signaling pathways that proteins contribute
to were assessed by searching against the Kyoto
Encyclopedia of Genes and Genomes database (http://
www.genome.jp/kegg/pathway.html). Protein-protein
interaction network analyses were derived from the
Search Tool for the Retrieval of Interacting Genes/Pro-
teins (STRING) software (http://string.embl.de/).
Ethics statement
Ethical approval for the study was obtained from
Addis Ababa University, Aklilu Lemma Institute of
Pathobiology Research and Ethics Committee as well
as from the National Research Ethics Committee of
Ethiopia (Ref No:3.10/785/07). Written consent was
obtained from each study participant after clearly
explaining the objective of the study. Blood sample
collection was undertaken under aseptic conditions by
licensed medical laboratory professionals. Volunteer
individuals with signs and symptoms of active TB or
any other disease during the enrolment period were

http://www.geneontology.org/
http://www.geneontology.org/
http://www.genome.jp/kegg/pathway.html
http://www.genome.jp/kegg/pathway.html
http://string.embl.de/
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treated in nearby health facilities at the expense of
this study.

Results
Socio-demographic characteristics of study participants
Of the 40 study participants, 5 (50%), 5 (50%), 5(50%)
and 5 (50%) were males for HC, LTBI, active TB cases
and NTM cases, respectively. There was no significant
gender difference in the four groups (χ2 = 0.220; P =
0.896). The mean age of healthy individuals was 35.71
with an SD of 12.52, the mean age of individuals with
LTBI was 37.15 with an SD of 11.69, the mean age of in-
dividuals with active TB was 34.52 years with an SD of
17.48; the mean age of individuals with NTM was 34.71
with an SD of 12.52. There was no significant age differ-
ence among the four groups (P = 0.685). Healthy and
LTBI subjects were free of TB clinical signs and symp-
toms. All individuals with active TB and NTM infections
had clinical signs and symptoms of TB. There was a sig-
nificant mean IFN-γ value difference comparing the four
groups (P < 0.001) (Table 1).

Identification and relative quantification of proteins in
unstimulated plasma
The UPS samples were analyzed using a well-established
high-resolution accurate mass (HR/AM) based LC-MS/
MS system [30, 34, 35] without pre-fractionation in two
technical replicates. Using the MaxLFQ algorithm 189
proteins were quantified (Supplemental Table-S2); 152
proteins were present in at least 3 of the 8 analyses and
quantified based on at least two unique peptides. The
distribution of the number of unique peptides quantified
per protein for the UPS data is illustrated in Fig. 1. Fol-
lowing multiple-sample statistical tests (ANOVA), 34
proteins were differentially abundant with correction for
multiple testing using the Benjamini-Hochberg method
(FDR ≤0.05). The unsupervised hierarchical clustering
analysis presented in Fig. 2a includes proteins with sta-
tistically significant differences in abundance for all four
cohorts under study. Independent-sample t-tests were
used to identify these proteins (LTBI versus HC, NTM
versus HC, and active TB versus HC; Supplemental
Table-S2). In all cases P-values < 0.05, q-values < 0.05,
and fold changes of t-test difference at + 1 or − 1 were
considered significant. Four proteins were increased in
Table 1 Study participant traits

Subject Characteristics HC LTBI

Male to female ratio 1:1 1:1

Mean age (SD) 35.71 (12.52) 37.15 (11.69)

TB symptoms, yes (%) – –

Mean IFN-γ values 347.57 908.38
abundance, and 31 proteins were decreased in abun-
dance in the LTBI group compared to the HC group.
M7GpppN-mRNA hydrolase (DCP2) is one of the pro-
teins that increased in the LTBI cohort. Twenty-four
proteins were increased in abundance, and 19 proteins
were decreased in abundance in the NTM vs. HC co-
hort. Twenty-nine proteins were increased in abundance
(four of which were also identified in NTM cases) and
20 proteins were decreased in abundance in active TB
cases compared to the HC group. Independent-sample
t-tests were also used to identify proteins with statisti-
cally significant differences in LTBI vs. NTM and LTBI
vs. active TB. Twenty-nine proteins were increased and
five proteins were decreased in abundance with statisti-
cally significant differences between the LTBI and NTM
cohorts. Thirty-seven proteins were increased in abun-
dance and four proteins were decreased in abundance in
active TB as compared to LTBI. Sixteen proteins were
increased in abundance and 22 proteins were decreased
in abundance in active TB as compared to NTM. One
cluster of proteins more abundant in active TB com-
pared to the other groups (α-1-acid glycoprotein 1
(ORM1), C-reactive protein (CRP), sialic acid-binding
Ig-like lectin16 (SIGLGC16), and serum amyloid A-1
protein (SAA1) is enriched in proteins functionally asso-
ciated with the acute phase (inflammatory) response. A
cluster of four proteins consists of fibrinogen subunits
and serine palmitoyltransferase 3 (SPTLC3). Fibrin is re-
sponsible for coagulation of blood while SPTLC3 metab-
olizes sphingolipids which, in turn, alter protease
activities involved in coagulation. Those proteins are
more abundant in TB and NTM cases compared to the
LTBI and HC groups.

Protein biomarkers in stimulated plasma
SPS proteomic analyses resulted in a total of 190 identi-
fied proteins (including proteins with a single unique
peptide) 144 proteins were quantified (Fig. 2b).
ANOVA analysis revealed 64 proteins significantly dif-
ferent in abundance comparing the groups (active TB,
NTM, LTBI, and HC) with a Z-Score > 1.5, P < 0.05
(FDR; q 0.05), applying the Benjamini-Hochberg mul-
tiple testing correction. The data suggests group-
specific adaptations in the plasma proteome upon
ESAT-6/CFP10 stimulation. The proteomes of the four
Active TB NTM P-Value

1:1 1:1 0.90

34.52 (17.48) 34.71 (12.52) 0.69

10 (100%) 10 (100%) –

531.31 710.78 < 0.001



Fig. 1 Distribution of the number of unique peptides quantified per protein for the combined unstimulated and stimulated plasma proteomic
datasets. To quantify total number of proteins first, all the identifications were examined and assessed the number of peptides per protein. Over
84% of the total (189) quantifiable proteins were quantified based on two or more peptides. For downstream analysis, we further filtered the data
to require the proteins to be quantified in at least 3 out of 8 LCMS runs. Among the resulting 160 proteins, 152 (95%) were quantified based on
at least 2 unique peptides. Unique proteins reported in the manuscript were unique protein groups
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subject groups clustered differently from those ob-
served for UPSs. Not unexpectedly, the HC proteome
forms a cluster more distant from those of the other
groups in SPSs, as compared to UPSs. Independent-
sample t-tests were used to compare changes in abun-
dance of proteins comparing two groups (Supplemental
Table-S2). In all cases P-values < 0.05, q-values < 0.05,
and fold changes of t-test difference at + 1 or − 1 were
considered significant. Thirty-two proteins were in-
creased and 17 proteins were decreased in abundance
in the LTBI compared to the HC cohorts. Among them
were the platelet factor (PF)-4, DCP2, SPTLC3,
kininogen-1, and ficolin-3. Twenty-five proteins were
increased in abundance, and 16 proteins were de-
creased in abundance in the NTM versus HC groups.
For the LTBI and NTM datasets, most proteins that
were differentially abundant in comparison with HC
datasets matched. Sixty-one proteins were differentially
regulated comparing the active TB and HC groups, 33
of which were increased in abundance and 28 of which
were decreased in abundance. ORM1 was markedly in-
creased, and albumin was decreased in abundance.
Cytoplasmic actin 1 and vitamin K-dependent protein
were increased. Albumin, DCP2, hemoglobin subunit
alpha, peroxiredoxin, and coagulation factor XIII B
chain were decreased in abundance in NTM cases as
compared to LTBI. Thirty-three proteins were in-
creased and thirty-one proteins were decreased in
abundance in active TB as compared to LTBI. Twenty-
one proteins were increased in abundance and 22 pro-
teins were decreased in abundance in active TB as com-
pared to NTM. A cluster of proteins generally most
abundant in active TB cases contained many acute
phase reactants. Additional proteins are protein S100-
A9 (S100-A9), sialic acid-binding Ig-like lectin 16
(SIGLEC16), protein S100-A8 (S100-A8), complement
factor-1 (CF1), lactotransferrin (LTF) and vitamin K-
dependent protein S (PROS1). Many of these proteins



Fig. 2 a Label-free quantitative proteomic analysis of plasma samples, in pools of ten patients each, from (1) Mtb-caused TB, (2) NTM-caused TB,
(3) LTBI, and (4) healthy controls. Proteins are listed with their UniProt short names (UniProt.org). Thirty-four proteins showed significant
differences among the four groups. The proteins were plotted in the heatmap after Z-score normalization and unsupervised hierarchical
clustering. Both UPS and SPS profiles are displayed with two LC-MS/MS replicates (rep1, rep2) for each of the four groups
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influence the chemotaxis and activation of leukocytes,
often in conjunction with platelet degranulation.

Proteins with significant differences in both stimulated
and unstimulated plasma samples
The protein coverage of the four groups (HC, NTM, TB,
and LTBI) with and without antigen stimulation is pre-
sented in Venn diagram-1 (Fig. 3). A total groups of 287,
283, 277, and 304 proteins were identified in HC, LTBI,
NTM, and active TB in UPSs, of which 155 proteins
were shared by all four groups. In SPSs, 210, 229, 214,
and 260 proteins were identified in HC, LTBI, NTM,
and active TB groups, of which 136 proteins were shared
by all four groups. To identify the proteins that showed
significant differences among the eight groups (HC,
LTBI, NTM, and TB; with and without stimulation) a
global ANOVA analysis was performed (Supplemental
Table- S3). The analysis led to 68 significant proteins of
which many were associated with coagulation (FGB,
FGA, FGG, SPTLC3), the acute phase response (HP,
CRP, ORM1, APCA), apolipoproteins (APOA1, APOA4,
APOB, APOE and APOH), complement components
(C1QC, C1S, C3, C4B, C5,C8A, C8G, CFB, CFH CFHR)
and hemolysis (hemoglobin subunits) (Fig. 4). Further
independent-sample t-tests were used to identify pro-
teins that differentiate the four groups (HC, NTM, TB,
and LTBI) in both UPSs and SPSs. DCP2 was increased
in abundance in the LTBI groups as compared to the

http://uniprot.org


Fig. 3 Protein identification overlaps among three disease and HC groups plotted in the Venn diagram. The (−) sign denotes no antigen
stimulation and the (+) sign denotes antigen stimulation
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other three groups (TB, NTM, and HC) in USP and SPS
datasets and not regulated in HC upon stimulation with
the ESAT-6/CFP-10 cocktail; making the enzyme a po-
tential biomarker candidate for the diagnosis of LTBI.
CRP, ORM1, SIGLEC-16, and PROS1, all increased in
abundance in both SPS and UPS (active TB versus in
LTBI), are potential biomarkers for the diagnosis of ac-
tive TB. Charged multivesicular body protein 4a
(CHMP4A) and platelet factor (PF)-4 are up-regulated
in NTM as compared to HC and down-regulated in
NTM as compared to active TB. We hypothesize that a
pattern of similar quantitiative protein changes in NTM
and LTBI datasets reflects co-existance of LTBI with
NTM in the community (Supplemental Table-S2). Plate-
let factor (PF)-4, Fibrinogen alpha chain (FGA), alpha-2-
HS-glycoprotein, alpha-2-HS-glycoprotein chain A,
alpha-2-HS- (AHSG), CRP, ORM1, and PROS1 have
physical and/or functional interactions and constitute a
network through STRING (Search Tool for the Retrieval
of Interacting Genes/Proteins) database analysis (Fig. 5).
Further independent-sample t-tests were used to identify
proteins that were up or down-regulated upon stimula-
tion with the ESAT-6/CFP-10 antigen cocktail. Twenty-
nine proteins were up-regulated and 30 proteins were
down-regulated in SPSs compared to USPSs in HC; 29
proteins were up-regulated and seven proteins were
down-regulated in SPSs compared to UPSs in LTBI; two
proteins were up-regulated and two proteins were
down-regulated in SPSs compared to UPSs in NTM, and
6 proteins were up-regulated and 2 proteins were down-
regulated in SPSs compared to UPSs in active TB (Sup-
plemental Table-S4). The data are consistent with the
notion that antigen stimulation had occurred in symp-
tomatic patients (TB, NTM) as part of the immuno-
physiological response, thus diminishing the extent of
immune response-associated protein changes in plasma
compared to SPSs. This is not the case for LTBI and,
particularly, HC cohorts.

Bioinformatic analysis
We used GO term ontology to assess the enrichment of
biological entities (molecular functions, biological pro-
cesses, cellular localization) based on the differentially
abundant proteins (P < 0.05), data from all disease group
comparisons with HCs were considered. With respect to
cellular compartment analysis, the GO terms blood mi-
croparticle and extracellular region/exosome/space were
highly enriched for UPS and SPS datasets, more so in
SPS datasets. Microparticles (MPs) are considered to re-
flect cellular stimulation, activation, degeneration, and
apoptosis [36], consistent with the notion that immune
cells are directly stimulated with the TB antigens in SPSs
but not in UPSs. Most blood plasma proteins are se-
creted proteins, explaining the enrichment of extracellu-
lar entities. With respect to molecular function analysis,
the GO terms endopeptidase inhibitor activity and
serine-type endopeptidase activity were highly enriched
in SPSs but only moderately enriched in UPSs. Many
acute-phase proteins including serpins are endopeptid-
ase inhibitors. This is consistent with increased stress re-
sponses elicited by immune cell stimulation and the
release of endopeptidases in SPSs upon activation by TB
antigens. Antigen binding functions were more enriched
in SPSs than in UPSs, consistent with the expected bind-
ing of ESAT-6 and CFP10 to MHC class II molecules
for presentation to CD4 T-cells. It which results in IFN-
γ production of the stimulated T-cells [37, 38]. In con-
trast, the term immunoglobulin receptor binding was



Fig. 4 Heatmap of plasma protein subset with quantitative changes among the four groups. For the protein level analysis of 2 h and 6 h
timepoints after gefitinib treatment only duplicate samples were available, limiting the possibility to perform statistical analysis of altered protein
levels. Still, a heatmap visualization of the protein level quantification at all timepoints indicates a gradual increase/decrease of protein levels with
clearly visible patterns already 2 h after EGFRTKI treatment significantly. The comparison of the signal levels for the 152 analytes measured by
multiple-sample test (ANOVA) revealed 68 proteins significantly different among the eight groups with a Z-Score > 1.5, p < 0.05 with Benjamini-
Horchberg false-discovery rate (FDR; q) of 0.05 correction. All 68 ANOVA significant proteins (Benjamini-Hochberg FDR 0.01 correction) were
plotted here. The genes names of the proteins were displayed on the y-axis. Blue color indicates down regulation, black color indicates no
change and yellow color indicates up regulation
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much more enriched for USP datasets, supporting the
notion of specific T-cell stimulation by the two TB anti-
gens. With respect to biological processes, GO terms
more enriched in SPSs had a regulatory context (nega-
tive regulation of endopeptidase activity and regulation
of complement activation). This is in agreement with the
need to regulate proinflammatory activities upon antigen
stimulation. Indeed, proteins induced in SPSs had mo-
lecular function and biological process enrichments for
the complement system, the acute phase response and
endopeptidase activities (Fig. 6). Platelet degranulation
was the most enriched GO term for SPS datasets, con-
sistent with the role of platelets in immune cell
stimulation.

Discussion
The currently used diagnostic tests for active TB (such
as microscopy and culture-based) are not sensitive
enough and relatively slow for point of care applications
[39, 40]. The currently used diagnostic test for LTBI, an
IGRA, has generally poor specificity. Simultaneous
measurement of multiple cytokines from individual T-
cells is confounded by response variability due to poten-
tial co-stimulation of T-cell responses derived from
other pathologies. Transcriptional signatures are difficult
to incorporate into tests in the diagnostic setting [13].
Proteomics can improve our understanding of patho-
logical processes involving interacting components of
the immune system and signaling pathways [41]. In this
study 189 proteins of which 34 proteins were differen-
tially abundant among active TB, NTM, LTBI, and HC
cohorts in UPSs, were quantified by label-free ap-
proach. In addition, 190 proteins of which 64 proteins
were differentially abundant among active TB, NTM,
LTBI, and HC cohorts were quantified in SPSs. Bio-
informatics analysis showed that most of the differen-
tially expressed proteins are involved in cellular
processes such as responses to stimuli, metabolic pro-
cesses, and biological regulations. Our findings are in
agreement with a study conducted by Dan-Danet al
[17] that showed that most abundance-changed pro-
teins in TB patients (compared to a HC group) are



Fig. 5 The black-lined circles on the left and right highlight proteins
specifically abundance-changed in the TB group and those for the
NTM vs. TB comparison, respectively. Those that are not encircled,
differentiated LTBI from the other groups for SPS samples
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involved in metabolic processes, responses to stimuli,
and the immune system.
DCP2 is a decapping metalloenzyme that catalyzes the

cleavage of the cap structure on mRNAs, specific to N7-
methylated guanosine containing RNA, and thus influ-
ences mRNA turnover [39, 40]. The 5′ end of eukaryotic
mRNA is capped and methylated to protect mRNA from
degradation and enhance protein synthesis [42, 43]. The
cap can be removed from mRNA resulting in GpppRNA.
which is at risk of degrading mRNA former to splicing,
export, and translation. The study conducted by Anna
et al. [44] showed TbDcp2 is capable of releasing
m7Gpp from m7GpppRNA in a magnesium-dependent
manner. Uncapped RNA effectively inhibited Dcp2 activ-
ity. In this study, m7GpppN-mRNA hydrolase was in-
creased in abundance in LTBI as compared to HC.
M7GpppN-mRNA hydrolase was highly decreased in
abundance in stimulated active TB as compared LTBI,
which may indicate that stimulation with TB antigen up-
regulate this protein in LTBI. More surprising, the pro-
tein was not changed upon stimulation with ESAT-6/
CPF-10 on HC and NTM; this suggests a selective pro-
tein abundance change for infection with MTBC. To our
knowledge, DCP2 was not reported as involved in the
host response to TB elsewhere. However, it was reported
that host gene-environment interactions play a crucial
role in determining the outcome of TB. Such interac-
tions are considered important to evolve strategies to
prevent mycobacterial infection [45]. Functional and bio-
marker validation studies are needed to elucidate the
role of DCP2 in TB and LTBI.
A cluster of five proteins more abundant in TB com-

pared to all other groups has a strong functional associ-
ation with the acute phase response. CRP and ORM1
are the most common acute-phase proteins relevant to
infections as they bind pathogens and facilitate comple-
ment activation [46]. CRP promotes phagocytosis and
complement fixation through its calcium-dependent
binding to phosphorylcholine, and its levels rise in active
TB infection through IL-6 mediated fusion [47]. In this
study, CRP was increased in abundance in both SPS and
UPSs in patients with active TB as compared to HC,
LTBI, and NTM. Our data are in agreement with other re-
sults [16, 48, 49], especially in the context of CRP abun-
dance. ORM1 is an acute-phase protein promoting disease
progression by suppressing cell-mediated immunity and
thereby enhancing the growth of bacilli [50–52]. The main
sources of ORM1 are alveolar macrophages and type II
pneumocytes at the early stage of pulmonary TB. At ad-
vanced stages, foamy macrophages locate in tuberculous
areas [50, 53]. Pulmonary inflammation increases the
ORM1 concentration in the serum and inflamed areas of
the lungs [50]. Multiple studies on primary cultures of rat
and human hepatocytes indicated that low levels of albu-
min and high levels of ORM1 are attributed to the regula-
tion of monokines, particularly IL-6 [54–56]. In our
previous study [21], IL-6 did not show quantitative differ-
ences comparing active TB with LTBI as well as HC. We
conclude that CRP and ORM1 are important mediators of
the stress response to immune activation and monokine-
associated inflammation in active TB cases.
Increased abundances of proteins that are involved in

platelet degradation (as determined by our study) may
indicate the role of platelets in antimycobacterial im-
munity. Our data agree with the other studies [57] where
platelets were associated with anti-mycobacterial im-
munity in parallel to macrophages and IFN-γ producing
T-lymphocytes [58]. Platelets are increasingly recognized
to have diverse functions in inflammation and host
defense [59]. Platelets also interact extensively with leu-
kocytes and change phenotype and functions of the lat-
ter [60–62] through ligation of platelet P-selectin with
monocyte P-selectin glycoprotein ligand-1 (PSGL-1)
[63]. Studies showed that platelets are important players
in the formation and function of granuloma and macro-
phage transformation in TB [64]. Platelets also play a
role in facilitating migration of monocytes into tissues
[65], through up-regulation of CCR5 during TB infection
via preferentially bind to CD16 +monocytes [66]. In-
creased abundance of PROS in both SPSs and USPs in
active TB as compared to LTBI (our data) suggests that
patients with TB are in a systemic hypercoagulable state
[67]. Our data argue for complement system activation,
especially for the TB cohort, following stimulation by
EST-6/CFP10.We hypothesize that the stimulation with
TB antigens activates the complement cascade and
platelets which, in turn, activate leukocytes. Leukocytes
produce calgranulins (S100-A8 and S100-A9) which
contribute to the release of cytokines [68]. Cytokines
were not detected due to concentration ranges below
the limit of detection for LC-MS/MS plasma proteomics.
Chronic pulmonary disease is the most common clin-

ical manifestation of NTM. Physical findings and



Fig. 6 Functional analysis of protein categories using a bioinformatics resource. Differentially abundant proteins derived from the comparison of
all three disease categories (TB, LTBI, NTM) compared to HC subjects were combined, separately for the UPS and SPS database, and subjected to
Gene Ontology enrichment analysis for (a) molecular function, (b) biological process, and (c) cellular component, (http://geneontology.org/docs/
go-enrichment-analysis/). Top ten most enriched GO terms are listed with their enrichment P-values
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symptoms-based clinical examination of NTM pulmon-
ary disease are variable and nonspecific. AFB micro-
scopic examination is also not specific, as evidenced by
16.9% of the Mycobacterium isolates in respiratory sam-
ples that were NTM positive for AFB [69]. Presumptive
diagnosis based on clinical and radiographic features is
not adequate for the initiation of therapy. Though the
excellence of IGRA ELISA to differentiate NTM and TB
infection in non-endemic countries was reported [70],
34–49% IGRA ELISA positive cases were reported in
NTM in endemic countries [71]; this supports our hy-
pothesis that the similarity of protein changes observed
for both LTBI and NTM cases are explained by frequent
coexistence of LTBI and NTM infection in our study
community. The proteins of NTM that were identified
in this study and previously described by Jusus et al. [72]
appear to reflect cross-reactivity observed between
MTBC and NTM exposition. Two proteins such as the
charged multivesicular body protein 4a (CHMP4A)
and the platelet factor (PF)-4, were up-regulated in
NTM as compared to HC and down-regulated in
NTM as compared to active TB in this study.
CHMP4A belongs to the chromatin-modifying pro-
tein/charged multivesicular body protein (CHMP) and
components of ESCRT-III (endosomal sorting com-
plex required for transport III). The latter is a complex
involved in the degradation of surface receptor pro-
teins and the formation of endocytic multivesicular
bodies (MVBs) [73]. The down-regulation of
CHMP4A in NTM as compared to active TB supports
the notion that NTM infection is prevalent in im-
munocompromised individuals [74].

http://geneontology.org/docs/go-enrichment-analysis/
http://geneontology.org/docs/go-enrichment-analysis/
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Conclusion
Plasma proteomes are different comparing LTBI, TB
and healthy groups and change further upon ESAT-6/
CFP-10 antigen cocktail stimulation. Further studies
using larger sample sizes are warranted to validate the
robustness and potential clinical value of our identified
TB biomarkers. Upon validation, a subset of those may
serve to develop tests for rapid clinical diagnosis of TB
infected individuals.
Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12953-020-00165-5.

Additional file 1: Supplemental dataset S1. The summary file
contains summary information for all the raw files processed with a
single MaxQuant run. The summary information consists of some
MaxQuant parameters, information of the raw file contents, and statistics
on the peak detection. Based on this file a quick overview can be
gathered on the quality of the data in the raw file. The clustering and
correlation analyses were performed in Perseus environment (version
1.5.0.15) using embedded functions. The LFQ intensities generated by
MaxQuant were log (base 2) transformed, and then imputed with
missing values by default settings in Perseus. LC-MS/MS data were depos-
ited to the Proteome Xchange Consortium via the PRIDE partner reposi-
tory with the dataset identifier PXD012412. The letters A and B denote
biological replicates (later merged together), and rep1 and rep2 denote
technical replicate. Number 1–4 are unstimulated plasma samples and
number 5–8 are stimulated plasma samples.

Additional file 2: Supplemental dataset S2. Differentially abundance
values of proteins comparing four groups (HC, LTBI, NTM and active TB)
to each other’s measured from analyzed in two technical replicates
computing the abundances with the MaxLFQ software tool. The analytes
were measured from 40 enrolled participants (10 each for the cohorts
HC, LTBI, active TB and NTM) from unstimulated and 40 enrolled
participants (10 each for the cohorts HC, LTBI, active TB and NTM) from
stimulated. Thirty-five proteins were differentially expressed in LTBI com-
paring to HC, 43 proteins were differentially expressed in NTM comparing
to HC and 49 proteins were differentially expressed in active TB compar-
ing to HC, 34 proteins were differentially expressed in NTM as compared
to LTBI, 41 proteins were differentially expressed in active TB as compared
to LTBI, and 39 proteins were differentially expressed in active TB as com-
pared to NTM in unstimulated plasma samples. In the meanwhile, 50 pro-
teins were differential expressed in LTBI comparing to HC, 41 proteins
were differential expressed in NTM comparing to HC, 61 were differen-
tially expressed in active TB comparing to HC, 13 proteins were differen-
tially expressed in NTM as compared to LTBI, 64 proteins were
differentially expressed in active TB as compared to LTBI, and 43 proteins
were differentially expressed in active TB as compared to NTM.
Independent-sample t testing was performed and P-values < 0.05 were
considered statistically significant. Student’s t-test difference of + 1 or − 1
was used as cutoff value. False discovery rate was calculated and q-values
≤0.05 were also considered statistically significant. Columns in the Excel
files designate technical replicates (donated by rep), comparison groups,
peptides, T-test difference, t-test values, q-values, protein ID, protein
names and gene names. Significantly up-regulated proteins were
highlighted by red color, significantly down-regulated proteins were
highlighted by blue color, non-significantly up and down regulated pro-
teins were highlighted by yellow color and not regulated proteins were
highlighted by black color.

Additional file 3: Supplemental database 3. Global ANOVA analysis
to identify the proteins that showed significant differences among the
eight groups (HC, LTBI, NTM, and TB) in plasma samples with and
without stimulation. To perform the quantization analysis, the LFQ values
of each protein derived from MaxQuant were first log2 transformed and
filtered to eliminate proteins with the most missing values. Missing values
for other proteins were imputed and then multiple-samples test (ANOVA)
was performed with Benjamini-Hochberg correction (FDR = 0.05), which
led to 68 proteins that showed significant difference among the eight
groups. P-values < 0.05 were considered statistically significant. Columns
in the Excel files designate technical replicates (donated by rep), compari-
son groups, peptides, MS/MS count, ANOVA P-value, ANOVA q-value, T-
test difference, t-test values, q-values, protein ID, protein names and gene
names.

Additional file 4: Supplemental dataset S4. Independent-sample t-
tests to identify proteins that were up-regulated or down-regulated upon
stimulation with the ESAT-6/CFP-10 antigen cocktail. Fifty-nine proteins
were significantly regulated upon stimulation with the ESAT-6/CFP-10
antigen cocktail in HC, 36 proteins were significantly regulated upon
stimulation with the ESAT-6/CFP-10 antigen cocktail in LTBI, and four pro-
teins were differently regulated upon stimulation with the ESAT-6/CFP-10
antigen cocktail in NTM, eight proteins were significantly regulated upon
stimulation with the ESAT-6/CFP-10 antigen cocktail in active TB. Columns
in the Excel files designate technical replicates (donated by rep), t-test
significant, comparison groups, P-value, q value, t-test difference, protein
ID, protein names and gene names. P-values < 0.05 were considered sta-
tistically significant.
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