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Abstract

Background: Polypterus senegalus can fully regenerate its pectoral lobed fins, including a complex endoskeleton,
with remarkable precision. However, despite the enormous potential of this species for use in medical research, its
regeneration mechanisms remain largely unknown.

Methods: To identify the differentially expressed proteins (DEPs) during the early stages of lobed fin regeneration
in P. senegalus, we performed a differential proteomic analysis using isobaric tag for relative and absolute
quantitation (iTRAQ) approach based quantitative proteome from the pectoral lobed fins at 3 time points.
Furthermore, we validated the changes in protein expression with multiple-reaction monitoring (MRM) analysis.

Results: The experiment yielded a total of 3177 proteins and 15,091 unique peptides including 1006 non-
redundant (nr) DEPs. Of these, 592 were upregulated while 349 were downregulated after lobed fin amputation
when compared to the original tissue. Bioinformatics analyses showed that the DEPs were mainly associated with
Ribosome and RNA transport, metabolic, ECM-receptor interaction, Golgi and endoplasmic reticulum, DNA
replication, and Regulation of actin cytoskeleton.

Conclusions: To our knowledge, this is the first proteomic research to investigate alterations in protein levels and
affected pathways in bichirs’ lobe-fin/limb regeneration. In addition, our study demonstrated a highly dynamic
regulation during lobed fin regeneration in P. senegalus. These results not only provide a comprehensive dataset on
differentially expressed proteins during the early stages of lobe-fin/limb regeneration but also advance our
understanding of the molecular mechanisms underlying lobe-fin/limb regeneration.
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Background
The mystery of limb regeneration in vertebrates has
attracted the attention of scientists for many years. The
newts and salamanders have one iconic capacity of
complete regeneration of all appendages [1]. Anurans
have only restricted regeneration capacity, and usually
lose it after metamorphosis [2]. Mammals have the
capacity of regeneration of the digit tip, but not limb [3].
Polypterus regenerates its lobed pectoral fins with

remarkable accuracy [4]. Advances in the study of the
development of regenerated limbs have been reported,
but why certain species are able to regenerate their limbs
is still unknown. In addition, the molecular mechanisms
in bichirs lobed fins (endoskeleton) regeneration process
remain unknown. It is possible that if we comprehen-
sively analyze the molecular mechanisms involved in the
regeneration of lobed pectoral fins in bichirs, we can
more easily understand the process of complete lobe-
fin/limb regeneration ability.
Salamanders seem to be the only living tetrapods that

can regenerate full limbs [5]. However, among verte-
brates, the paired lobe-fins/limbs of adult lungfishes and
bichirs are also able to fully regenerate [4, 6, 7]. It is
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notable that the lobe-fins/limbs of bichirs include a bony
endoskeleton that differs from the dermal exoskeleton of
the fins of teleost fishes, although bichirs were always
classified as Actinopterygii [8]. In addition, all three of
these species live in water-land transitional environments.
Polypterus senegalus, also known as the Senegal bichir

or the gray bichir, is a prototypical fish species in the
Polypterus genus. Although the oldest fossil polypteri-
formes records are only known from 112 to 99 Mya [9],
some phylogenetic hypotheses predict a divergence age
of 385 to 426.8 Mya [8, 10]. Polypterus shares many
characteristics with amphibians in body structure, such
as paired lungs [11–14]. In addition, it has been ob-
served crawling on land both in the lab [15] and in the
open [16] by its complex lobed fins, which have equiva-
lent radius, ulna, radiale and ulnare [4, 14, 17].
Newt is remarkable in terms of its regenerative ability.

However, it is not as convenient as other model organ-
isms. To some degree, such a phenomenon is caused by
their enormous genome size, about 25–50 pg (C value)
that is approximately 10 times of that of humans (C
value 3.5 pg). In addition, the large introns in newt genes
may also reduce the value of this group for research
compared to other tetrapods [18]. Previous studies have
found that P. senegalus is able to initiate lobe-fin/limb
regeneration similar to amphibian, with the formation of
a blastema [4, 19]. P. senegalus has a relative small gen-
ome size (~ 3.4 Gbp), and short time of reproductive
cycle (could be as short as 6 months) [11], making it a
better candidate as a model organism for limb/lobe-fin
regeneration in vertebrates. Polypteriformes are charac-
terized with derived and plesiomorphic features, which
make these fishes attractive subjects for evolutionary and
developmental comparisons of lobe-fin/limb regener-
ation. The research herein was targeted at identifying
candidate genes and molecular mechanisms that might
have played a vital role in lobe-fin/limb regeneration.

Results
Growth curve
The overall workflow and animal sample for the present
study were displayed in Fig. 1a and b, respectively. The
green curve in Fig. 1c represents the growth of the regener-
ating forelimbs of P. senegalus over 15 weeks, and the sam-
pling time points of 0 dpa (0D_L and 0D_R), 4 dpa (4D_B)
and 12 dpa (12D_D) are marked. The regenerating fore-
limbs of P. senegalus exhibited a rapid growth rate in the
early stage, and after 9 weeks, it plateaued and persisted for
a long time. During the plateaued stage, the growth rate
was low (only 0.35mm over 5 weeks). Photos of regenerat-
ing lobed fins at key time points were obtained (Fig. 1d). In
order to provide an intuitive understanding of the lobed fin
regeneration process, the histologic features of stump tissue
in 0 dpa, 4 dpa, and 12 dpa were shown in Fig. 1e.

Overview of the library and quantitative proteomics
analysis
An 8-label isobaric tags for relative and absolute quanti-
fication (iTRAQ) experiment was performed for eight
samples of the pectoral fins of bichirs at three time
points, using P. senegalus genome data as background
library. The overall proteomic results, such as basic de-
scriptive statistics, peptide length distribution, protein
coverage distribution, and mass errors of all of the iden-
tified peptides, are presented in Additional file 1. A total
of 3177 proteins and 15,091 unique peptides were quan-
tified in our experiment (Additional file 2), representing
15.4% of the 20,582 predicted proteins in the P. senega-
lus genome. We determined that 1006 non-redundant
(nr) proteins were differentially regulated during the re-
generation progress. Among these proteins, 592 (4D_B/
0D_L) and 87 (12D_D/4D_B) were upregulated while
349 (4D_B/0D_L) and 55 (12D_D/4D_B) were downreg-
ulated after lobed fin amputation (Additional file 3).
Comparison of replicate datasets—Using the quantitative

value of proteins in the duplicate data, the degree of vari-
ation and the distribution of statistical variation were calcu-
lated. All of the mean CV values were less than 0.15,
revealing a relatively high repeatability among multiple sam-
ples (Additional file 4: A), and the protein ratio distribution
is shown in Additional file 4: B. On the basis of protein ra-
tios transformed by log2, we conducted a linear regression
analysis to compare the two experimental replicates, so as to
evaluate the reproducibility of the iTRAQ proteomic results.
R2 values showed the strong linear correlation of the two
experimental replicates for both 4D_B and 12D_D
(Additional file 4: C). As indicated by these results, the level
of reproducibility between replicate datasets was high.

Functional classification of differentially expressed
proteins
It was shown from Fig. 2 (only p < 0.001 and top 10 terms
were showed) that at both 4D_B and 12D_D, five KEGG
pathways were regulated differently, which was displayed in
the analysis result of KEGG pathway enrichment: “Ribo-
some” (ko03010), “Oxidative phosphorylation” (ko00190),
“Parkinson’s disease” (ko05012), “Huntington’s disease”
(ko05016), “Alzheimer’s disease” (ko05010) and “Metabolic
pathways” (ko01100) (Additional file 5: A).
After GO term enrichment analysis, we got several

biological processes, including “cellular respiration trans-
lational termination”, “translation”, “translational initi-
ation”, “oxidation-reduction process” and “generation of
precursor metabolites and energy” were significantly
enriched in both 4D_B and 12D_D, suggesting that the
processes above are very active during the regeneration
process (Additional file 5: B).
The GO molecular function terms, including “ribosome

structural constituent,” “structural molecule activity,”
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“oxidoreductase activity” and “cofactor binding,” and GO
cellular component terms, including “mitochondrial inner
membrane,” “organelle inner membrane,” “mitochon-
drion,” “cytosolic ribosome,” “ribosome” and “respiratory
chain,” were significantly enriched in both 4D_B and
12D_D (Additional file 5: C and D).

Protein−protein interaction network analysis
To further understand the biological process or pathway
regulated in the early stage of lobe fin regeneration, a

protein interaction network of DEPs in 4D_B/0D_L was
performed by STRING with Xenopus Silurana as back-
ground organism. As a result, 697 nodes and 8263 edges
were retrieved. After the computing by MCODE in
Cytoscape, 16 clusters were obtained (Additional files 6
and 7). And the top 10 clusters were displayed here.
Cluster 1 and 9 consists of proteins involved in ribosome
and RNA transport. Cluster 2–6 consists of proteins in-
volved in oxidative phosphorylation and metabolic path-
ways. Cluster 7–8 consists of proteins involved in ECM-

Fig. 1 Study sampling and experimental scheme. a The overall workflow of this study. b A photo of a live specimen of P. senegalus with a
homemade fish-holder. c Growth curve of P. senegalus pectoral lobed fin after amputation. The sampling time points of 0 dpa (0D_L and 0D_R),
4 dpa (4D_B) and 12 dpa (12D_D) are labeled. d P. senegalus lobed fins at different regeneration stages. e Tissues of three time points were
shown by Alcian blue- and alizarin red- staining, and feulgen staining on paraffin tissue sections. The position of the section was shown on the X-
ray photo. Scale bars: 0.5 mm. dpa: days post amputation
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receptor interaction. Cluster 10 consists of proteins in-
volved in Golgi and endoplasmic reticulum. It is worth
noting that cluster 7 contains three integrins, and the
main signaling pathways involved are DNA replication,
Biosynthesis of amino acids, Regulation of actin cyto-
skeleton, and ECM-receptor interaction (Fig. 3).

Validation of changes in protein expression using
multiple-reaction monitoring analysis
Multiple-reaction monitoring (MRM) was used to pro-
vide further independent validation of the expression
status of 30 of the quantified proteins. Finally, 27 results
from MRM were in line with the quantitative proteomic
results (Fig. 4). Details of the dynamic MRM results,
including the fold changes, normalized intensities and p-
values of 30 proteins are given in Additional file 8.

Discussion
The lobe fin regeneration proteome
This study, for the first time, obtained a quantitative
proteome profile of lobed fin (endoskeleton) regeneration

in bichirs. The growth curve in P. senegalus (Fig. 1c)
shows a difference with the growth curve in N. viridescens
[20]. Iten and Bryant’s research on newt shows that ampu-
tation location information does not affect the develop-
mental sequence of limb regeneration events, but it does
affect the rate of growth of regenerates [20]. Although the
lengths of the resections were different, their amputation
positions were located at the proximal end of the ulna
along the longitudinal axis. Therefore, it is still speculated
that the growth rate of bichir appendage is higher in the
early stage than the newt limb.
The P. senegalus limb/lobe-fin regeneration proteome

contains proteins that are expressed in the cancer stem
cells, nerve cells, muscle cells, and cartilage cells. As a
consequence, we found cancer stem cell-associated pro-
teins, such as mmp2, mmp9, mmp13, mmp14, paxillin,
Ras, src and c-myc [21, 22], as well as genes expressed
in the immune system, such as C5 [23], C9 [24], and
HMGB1 [25]. Besides, numerous renowned and sup-
posed growth regulation proteins were detected. Among
those were c-met [26], FGF2 [27] and TGFBI [28]. We

Fig. 2 Enrichment analysis of the differentially expressed proteins in 4D_B and 12D_D. GO terms and KEGG pathways enriched in the
differentially expressed proteins at 4 and 12 days post amputation. 12D_D VS 0D_L was shown in red. 4D_B VS 0D_L was shown in green

Lu et al. Proteome Science            (2019) 17:6 Page 4 of 10



also identified a MARCKS-like protein (MLP) that was
previously reported to induce the initial cell cycle re-
sponse during limb regeneration in axolotls [29]. Fur-
thermore, considerable proteins that were reported to be
engaged in neurodegeneration mechanisms during limb
regeneration were found, such as CASP3 [30], CASP7
[31], and its related proteins ERK1/2 [32], Clathrin [33],
Cdk5 [34], SOD2 [35], and ApoE [36, 37]. In addition to
stem cell pathways, we also identified wnt/β-Catenin sig-
naling proteins which are reported to play an important

role in regulating vertebrate limb regeneration, such as
GSK-3β, mTOR and the β-Catenin [38, 39]. As demon-
strated from these results, within the first 12 days, a wide
variety of protein families that have different functions
expressed in the epimorphosis process of the lobed fin
are included in this proteome.

Blastema formation
In a recent study, through the iTRAQ method, Tang, J.,
et al. found that differentially expressed proteins were
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associated with wound healing, immune response, cellu-
lar process, metabolism and binding in the salamanders’
blastema formation [40]. By similar iTRAQ method,
Geng et al. found that in the early stages of newt’s blas-
tema formation, differentially expressed proteins were
concentrated in the categories such as signaling, Ca2+

binding and translocation, transcription and translation,
immune response, cell death, cytoskeleton, metabolism
[41]. Correspondingly, in the current study, DEPs are
mainly concentrated in ribosome and RNA transport,
metabolic, ECM-receptor interaction, Golgi and endo-
plasmic reticulum, DNA replication, and Regulation of
actin cytoskeleton, suggesting that these biological pro-
cesses are active during the appendage regeneration
process.
Integrin signaling plays an indispensable role in the re-

generation process of the spinal cord [42]. In the current
study, we found that the integrins-related signaling path-
way was significantly enriched in bichirs lobe-fin regen-
eration. It was demonstrated that αvβ5 integrin plays a
key role in the dedifferentiation of chondrocytes by acti-
vating ERK signaling [43]. Previous studies have shown
that integrin is involved in spontaneous axonal regener-
ation after peripheral nerve injury, and axonal regener-
ation would be inhibited if integrins were inactivated by
axon-repulsive molecules [43–45]. It is concluded that
the regeneration process in vivo is always associated with
increased integrin [42]. However, our study found that
during the blastema formation of bichirs, two integrins
were up-regulated, but one integrin was down-regulated.
This means that integrins may play a complex role in
the process of appendage regeneration.

Differentially regulated proteins during limb/lobe-fin
regeneration
Using our iTRAQ method, hundreds of genes that were
differentially regulated in various periods of limb/lobe-
fin regeneration were identified. For instance, MMP13a
and VTN were strongly upregulated during the first four
days. MMP13 has been implicated as a contributor to
skeletal muscle regeneration and is critical for myoblast
migration [46], and VTN is a regulator of multimeriza-
tion and collagen binding during liver regeneration [47],
as well as a growth factor complex for wound repair and
tissue regeneration [48]. It is possible that MMP13a and
VTN also play an important role in the regulation of
lobed fin regeneration in bichirs. We also found many
other kinds of endopeptidases, showing that the remod-
eling of the extracellular matrix is essential for
regeneration.
Another gene from the same cluster, Chit1, which is a

biochemical marker of macrophage activation [49], was
strongly upregulated during the first four days. Macro-
phages remove tissue debris and activate stem cell

populations [50] and are required for adult salamander
limb regeneration [51].
The decorin protein gene DCN was downregulated

during the first four days but was later upregulated in
the days that followed, and this expression pattern is
consistent with this gene playing two different roles dur-
ing regeneration. During the early stages, DCN may be
involved in the response to dedifferentiation because a
low level of decorin is conducive to the growth of vari-
ous tumor cell lines and to an increased abundance of
anti-inflammatory molecules [52]. During the later
stages, DCN may be involved in the response to rediffer-
entiation and growth because a high level of decorin
promotes muscle cell differentiation and muscle regen-
eration [53], suppresses scar formation and promotes
axon growth [54]. Finally, it is possible that the level of
expression of decorin play a key role in lobe-fin/limb
regeneration.
HSPB1 (HSP27) is a protein that is related to regener-

ation, which could speeds up axonal growth in vitro after
peripheral nerve injury [55]. The HSPB1 protein was
downregulated during the first four days but was later
upregulated in the days that followed. During the early
stages, the low level of HSPB1 may have occurred in re-
sponse to apoptosis because HSPB1 is involved in pro-
tection against necrotic and apoptotic cell death. The
high level of HSPB1 during the later stages was consist-
ent with its late-expression property, which is different
from most axonal injury-regulated and growth-
associated genes [56].
Integrin beta 4 (ITGB4) is also called CD104. In the

biology of invasive carcinoma, it is likely to play a crucial
role. Integrins adjust cell-extracellular matrix (ECM) or
cell-cell interactions, and transformed signals that man-
age the growth of cell and expression of gene. The
forced activation of integrins can overcome inhibition
and increase axon regeneration [57]. Integrin-beta 1
(ITGB1) regulates chondrocyte proliferation and apop-
tosis [58], and the knockdown and knockout of ITGB1
in hepatocytes impair liver regeneration [59]. The ITGB4
protein was upregulated during the first four days and
later returned to normal levels in the days that followed.
During the early stages, ITGB4 may be involved in the
response to dedifferentiation and cell migration because
the upregulation of ITGB4 can restore the regenerative
performance of adult neurons [60], and promote
epithelial-mesenchymal transition, cell scattering, cell
motility, and vimentin expression [61].
Membrane transporters, synaptic transmission, and

regulators of nerve development were found in the con-
siderable enrichment, supporting a model in which
nerve signaling might be crucial for early stages of limb
regeneration. As shown from recent researches, the re-
generation polarity in planarians can be regulated by
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the signaling of ventral nerve cords [62]. And limb
regeneration in axolotl can be enhanced by nerve sig-
naling [63, 64].
In summary, as revealed from our time-course ana-

lysis, the limb/lobe-fin regeneration is regulated by a dy-
namic, complicated proteomic network that is rapidly
caused after amputation (Fig. 5), which might be trig-
gered by nerve deviation and ECM interaction and
transducted by integrins that launch a cascade of regen-
erative processes, such as cell migration, dedifferenti-
ation and regrowth, as well as scar suppression.

Validation of the proteome result
To validate the results of the proteome obtained from
the current study, we used the Multiple reaction moni-
toring (MRM) approach. Multiple reaction monitoring
(MRM) using mass spectrometry is a highly sensitive
and selective method for the targeted quantitation of
protein/peptide abundances in complex biological sam-
ples. Previous studies have shown that targeted MRM
proteomics can be used as a verification tool for candidates
in the context of a comprehensive proteome [65, 66].
Among the 30 selected target proteins, the expression trend
of 27 proteins was verified, and the difference in numerical
values may be attributed to differences in statistical
models or biological variation between the samples.

Three candidate proteins, such as MMP14, ITGB1,
and KCTD12, show opposite expression trends in
iTRAQ and MRM results, which may be due to bio-
logical variation between the samples.

Conclusions
In this study, we constructed a lobed fin regeneration
proteome for P. senegalus and generated time-resolved
profiles of the expressed genes based on the growth
curve. Functional analysis indicated that the differentially
expressed proteins were associated with Ribosome and
RNA transport, metabolic, ECM-receptor interaction,
Golgi and endoplasmic reticulum, DNA replication, and
Regulation of actin cytoskeleton. These results not only
provide a comprehensive dataset on differentially
expressed proteins during the early stages of lobe-fin/
limb regeneration but also advance our understanding of
the molecular mechanisms underlying lobe-fin/limb
regeneration.

Methods
Tissue collection and image acquisition
The animal experiment for this study was approved by
the Institutional Animal Care and Use Committee of In-
stitute of Hydrobiology (Approval ID: Y21304501). Adult
specimens of P. senegalus were commercially obtained
and maintained in glass tanks at 26 °C. The bichirs were
anesthetized in 0.1% Tricaine mesylate (MS-222) before
image collection and sampling. The bichirs were then
washed with pure water and dried with filter paper to
clean the pectoral fins, and amputations were performed
with small surgical scissors and forceps along the cross
section of the middle of the base of the pectoral lobe fin.
For iTRAQ, tissues (or regenerates) were collected at 0,
4 and 12 days post-amputation (dpa), and these experi-
ments were conducted in two biological replicates (dis-
tinguished by _C and _E), with each replicate consists of
10-pooled biological tissues for each stage. The 0 dpa
sample was from the amputated fin itself, and divided
into the 0 dpa lobe-fin (0D_L) sample and the 0 dpa ray-
fin (0D_R) sample. The 4 dpa sample which consists of
blastema was named 4D_B. The 12 dpa sample which
consists of re-differentiation tissues was named 12D_D.
The samples were flash frozen by liquid nitrogen for
protein preparation. For MRM, the same method was
used to collect tissues (or regenerates), with three
replicates.
The regeneration progress was observed to develop

the lobed fins regeneration growth curve. A vernier cali-
per and a camera were used to measure the length of
the regenerates and to take photos, respectively, over 15
weeks. For histological analysis, stump tissues of 0 dpa, 4
dpa, and 12 dpa were collected and immersed in the 4%
paraformaldehyde fixative.

Integrin
Nerve deviation

ECM interaction

Amputation

Neurodegeneration

Regrowth

Signals

Signal transduction

Cell migration

Cell dedifferentiation

Suppresses scar formation

Cell apoptosis

Macrophage

Fig. 5 Proposed model depicting the molecular mechanism based
on the P. senegalus proteome. The combination of all of these
mechanisms regulates the expression of hundreds of proteins and
promotes cell migration, dedifferentiation and regrowth, and
scar suppression
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iTRAQ process and MRM process
iTRAQ process—The tissues were treated using the
same method as previously described [67]. Briefly, the
tissues were split and then the proteins were reduced.
Then, Bradford method was used to determine the pro-
tein concentration. Total protein was digested and proc-
essed with 8-plex iTRAQ reagent (Applied Biosystems)
as previously described with minor modifications [67].
Briefly, the samples were labeled with the iTRAQ tags as
follows: Sample 0D_R_C (117 tag), Sample 0D_R_E (113
tag), Sample 0D_L_E (114 tag), Sample 0D_L_C (118
tag), Sample 4D_B_E (115 tag), Sample 4D_B_C (119
tag), Sample 12D_D_E (116 tag), and Sample 12D_D_C
(121 tag).
To separate the iTRAQ-labeled peptide mixtures, load

sample and acquire data, the same method was used as
previously described [67]. Briefly, peptide supernatant
was loaded into an LC-20 AD nano HPLC and then
eluted onto a 10 cm analytical C18 column. Data acqui-
sition was performed with a Triple TOF 5600 System fit-
ted with a Nano spray III source and a pulled quartz tip
as the emitter. The raw data files acquired from 5600
were converted into MGF files using 5600-ms converter,
and the MGF files were searched. Protein identification
was performed using the Mascot search engine (Matrix
Science, London, UK; version 2.3.02) against the P. sene-
galus genome database containing 20,582 sequences.
Proteins were identified and quantified as previously

described with minor modifications [68]. Briefly, pep-
tides with significance scores (≥20) at the 99% confi-
dence interval by a Mascot probability analysis greater
than “identity” were counted as identified. Only p values
< 0.05, fold changes larger than 1.4 were considered sig-
nificant differential expressions of proteins.
MRM process—For protein digestion, the same method

was used as in iTRAQ process. Then, the samples were
spiked with 50 fmol of β-galactosidase for data
normalization, and MRM analyses were performed on a
QTRAP 5500 mass spectrometer (AB SCIEX, Foster City,
CA) equipped with a Waters Nano-Acquity Ultra Per-
formance LC system. The method was as previously
described with minor modifications [69]. Briefly, the pep-
tides were separated on a BEH130 C18 column (0.075 ×
200-mm column, 1.7 μm; Waters) at 300 nL/min and
eluted with a gradient of 2–40% solvent B for 30min, 40–
60% solvent B for 3 min, a 2-min linear gradient to 80%
solvent B and maintenance at 80% for 5min. For the
QTRAP 5500 MS, a spray voltage of 2100 V, nebulizer gas
at 20 psi, and dwell time of 10ms were used. We use
MSstats with the linear mixed-effects model the P values
were adjusted to control the FDR at a cutoff of 0.05. After
data analysis with Skyline software, all of the proteins with
a p value < 0.05 and a fold change > 1.5 were considered
significant.

Bioinformatics analysis
Functional annotations of the proteins were conducted
using Blast2GO [70] program against the non-redundant
protein database (NR; NCBI; v2.5; animal; 8,428,593 se-
quences). Orthologous proteins were clustered based on
the Cluster of Orthologous Groups (COGs) of proteins
database [71]. KEGG (animal) [72] was used to identify
the molecular interaction and reaction networks of these
proteins. Hypergeometric tests were employed to per-
form GO enrichment and KEGG pathway enrichment,
with reference dataset of all identified proteins in the
whole proteome. The protein interaction network ana-
lysis was conducted using STRING (http://string-db.org/
). Then the network was visualized by Cytoscape v3.2.1
and further analyzed for densely connected regions by
Molecular Complex Detection (MCODE) v1.4.1 [73].
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