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Abstract

Background: Milk is the most important food for growth and development of the neonate, because of its
nutrient composition and presence of many bioactive proteins. Differences between human and bovine milk in
low abundant proteins have not been extensively studied. To better understand the differences between human
and bovine milk, the qualitative and quantitative differences in the milk proteome as well as their changes over
lactation were compared using both label-free and labelled proteomics techniques. These datasets were analysed
and compared, to better understand the role of milk proteins in development of the newborn.

Methods: Human and bovine milk samples were prepared by using filter-aided sample preparation (FASP)
combined with dimethyl labelling and analysed by nano LC LTQ-Orbitrap XL mass spectrometry.

Results: The human and bovine milk proteome show similarities with regard to the distribution over biological
functions, especially the dominant presence of enzymes, transport and immune-related proteins. At a quantitative
level, the human and bovine milk proteome differed not only between species but also over lactation within
species. Dominant enzymes that differed between species were those assisting in nutrient digestion, with bile salt-
activated lipase being abundant in human milk and pancreatic ribonuclease being abundant in bovine milk. As
lactation advances, immune-related proteins decreased slower in human milk compared to bovine milk.
Notwithstanding these quantitative differences, analysis of human and bovine co-expression networks and protein-
protein interaction networks indicated that a subset of milk proteins displayed highly similar interactions in each
of the different networks, which may be related to the general importance of milk in nutrition and healthy
development of the newborn.

Conclusions: Our findings promote a better understanding of the differences and similarities in dynamics of
human and bovine milk proteins, thereby also providing guidance for further improvement of infant formula.
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Background
Milk is one of the richest foods, as it provides complete
nutrition and bioactive components for healthy develop-
ment of the newborn. These nutritional and bioactive
components are essential for the neonate, for example
for cognitive development, pathogen prevention, intes-
tinal microflora modulation, and development of the im-
mune system [1, 2]. Of these bioactive components,
proteins have attracted great attention because of their
importance in the protection of the neonate. With the
development of proteomics techniques, more and more

proteins, including both high and low abundant pro-
teins, were characterized in the last few decades [3–5].
However, milk proteins are variable in presence and

concentration due to many factors. One of the most ob-
vious factors causing differences in protein concentra-
tion is species differences [6]. Caseins accounts for 80%
(w/w) of the bovine milk proteins, and for 50% of hu-
man milk proteins [4]. In addition, β-lactoglobulin exists
in bovine milk but cannot be found in human milk [6,
7]. Human and bovine milk diverge not only in their
high abundant protein composition, but also in their low
abundant protein composition. A total of 268 and 269
proteins were previously identified in human and bovine
milk, respectively, in our previous study [8]. Of these
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proteins, 44 from human milk and 51 from bovine milk
were related to the host defense system. Specifically, the
concentration of proteins involved in the mucosal im-
mune system, immunoglobulin A, CD14, lactoferrin, and
lysozyme, were present in much higher concentration in
human milk than bovine milk [8].
Furthermore, milk proteins also differ in concentration

over lactation. Immunoglobulins have been reported to
change rapidly in concentration from colostrum to ma-
ture milk in both human [9, 10] and bovine milk [11–
13]. Moreover, the low abundant proteins, such as com-
plement proteins, lipid synthesis and transport proteins,
and enzymes were also reported to change as lactation
advances [14, 15]. However, the differences in changes of
proteins over lactation has not been reported between
human milk and bovine milk directly, although we re-
ported the changes in the species separately [13, 16–18].
As human milk is used as reference and bovine milk is

used as protein source for producing infant formula
[19], the differences in the health outcomes between
breastfed and formula-fed infants could be related to the
differences in the nutrient intake [6]. Breastfed infants
were reported to have fewer infections (gastrointestinal
infections, acute otitis media), reduced risk for celiac
disease, obesity, and diabetes compared to formula-fed
infants [19]. Therefore, the aim of this study is to better
understand the role of different proteins, especially those
involved in immune activity, in both human milk and bo-
vine milk through elaborating the existing data in qualita-
tive and quantitative proteome [8] and their changes over
lactation [13, 16–18]. Separate interactomics studies of
human and bovine milk proteins have previously been
performed, using published data collected from many dif-
ferent sources [20, 21]. In this study, the analysis is a com-
parative data analysis on both species simultaneously,
where data has been collected on a single instrument [8,
13, 16–18], throughout lactation, allowing a better com-
parison between species.
In the current study, the human and bovine milk data in

Data set 1 [8] was reanalysed by Maxquant to give a more
precise comparison in the quantitative differences be-
tween human and bovine milk proteins. The changes of
both human and bovine milk proteome over lactation in
Data set 2 [13, 16–18] were reanalysed using a co-
expression (expression meaning the relative abundance)
network approach and integrated with protein-protein
interaction network data. The additional analysis enhances
the comparison between human and bovine milk prote-
ome from both qualitative and quantitative differences in
milk proteome and their differences in changes over lacta-
tion. This should contribute to better understanding of
the differences and similarities in biological functions net-
works of proteins, especially with regard to immune activ-
ity, in both the human and bovine milk proteome.

Result
A total of 379 proteins were quantified through reana-
lyzing the human and bovine milk of data set 1 prepared
by filter-aided sample preparation (FASP) and LC-MS/
MS. The specific number of identified proteins in milk
fat globule membrane (MFGM) and milk serum proteins
for both human and bovine species are shown in Fig. 1.
Of these quantified proteins, 93 proteins present in both
species. Figure 2 shows that both human milk and bo-
vine milk have similar distribution over biological func-
tions in quantified MFGM and milk serum proteins.
Transport proteins, enzymes, and immune-related pro-
teins were the three dominant biological function groups
in both human and bovine milk (Fig. 2). The biological
enrichment of these three protein groups were shown in
Additional file 1: Table S1. However, the number of pro-
teins in these three dominant groups was different be-
tween human and bovine milk. Bovine milk contained a
higher number of transport proteins than human milk
(Fig. 2), which was dominated by lipid and protein trans-
porters. Although the number of enzymes were similar,
they were quite different in the type between human and
bovine milk. The enzymes assisting nutrient digestion
were bile salt-activated lipase (CEL), and lipoprotein lip-
ase (LPL) alpha-trypsin chain 1 (PRSS1) in human milk
(Table 1) [16, 18], whereas pancreatic ribonuclease 1
(RNASE1), LPL, and ribonuclease 4 (RNASE4) were
dominant in bovine milk [13, 17].
Tables 1 and 2 show the quantitative differences of

common MFGM and milk serum proteins between
human and bovine milk. Lipid synthesis and transport
proteins, including fatty acid-binding protein, heart
(FABP3), perilipin-2 (PLIN2), butyrophilin subfamily 1
member A1 (BTN1A1), lactadherin (MFGE8), and platelet
glycoprotein 4 (CD36), were present at approximately 10–
100 times higher abundance in bovine MFGM (p < 0.05).
Serum albumin (ALB), monocyte differentiation antigen
CD14 (CD14), alpha-lactalbumin (LALBA), lactoferrin
(LTF), toll-like receptor 2 (TLR2), alpha-1-antitrypsin (SER-
PINA1), alpha-1-antichymotrypsin (SERPINA3), clusterin
(CLU), and polymeric immunoglobulin receptor (PIGR)
showed higher concentrations in human milk, especially for
ALB, LTF, SERPINA3, and CD14, which were around 20–
100 times higher in human milk serum (p < 0.05).
Since milk serum protein content is far higher than

MFGM protein content [20], the quantitative changes
over lactation were only determined for milk serum. A
total of 299 proteins were quantified in bovine milk
serum [13, 17] and 247 in human milk serum [16, 18] by
FASP and dimethyl labelling combined with LC-MS/MS.
There were 71 common proteins quantified in human
and bovine milk serum, with 34 of them quantified in
every time point over lactation. In addition to the high
number of transport proteins in bovine milk serum, the
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concentration of the transport proteins (calculated based
on the summed intensity based absolute quantification
(iBAQ values)) was higher in bovine milk serum than
human milk serum, whereas enzymes were higher in hu-
man milk serum (Figs. 2 and 3).
Although the biological function distribution were

similar in the identified proteins between human and
bovine (Fig. 2), the quantitative changes of these protein
groups differed over lactation (Fig. 3). Immune-related
protein group decreased during the course of lactation,
whereas transport protein and enzymes increased (Fig. 3).
Moreover, the changing rate of the protein with the
same functionality differed between species (Fig. 3); for

instance, immune-related proteins, LTF, complement C3
(C3), PIGR, and osteopontin (SPP1) decreased much fas-
ter in bovine milk serum compared to human milk
serum (Fig. 4). The changes in immune-related proteins
over lactation are important for two reasons. Firstly,
immune-related proteins had relatively higher concen-
tration in human milk than bovine milk. Secondly, these
proteins play important roles in the protection of the
neonate, which may therefore be proteins of interest for
application in infant formula. Hierarchical clustering
(Fig. 4) shows that these immune-related proteins are
correlated to each other. In addition to the correlation
of proteins related to complement and coagulation

Fig. 2 The distribution of biological functions found in human and bovine milk ((HS is human serum protein; HM is human MFGM protein; BS is
bovine serum protein; BM is bovine MFGM)

Fig. 1 The number of identified proteins in human milk and bovine milk (HS is human serum protein; HM is human milk fat globule membrane
(MFGM) protein; BS is bovine serum protein; BM is bovine MFGM; identified number of proteins in HS, HM, BS, BM are 111. 137, 109, 179)

Zhang et al. Proteome Science  (2017) 15:1 Page 3 of 14



Table 1 Quantitative comparison of overlap human milk MFGM and bovine milk MFGM (Bold proteins are significantly different
proteins by one-way ANOVA; the values are log10 average iBAQ values of proteins; Human milk samples were collected from 10
healthy mothers that were between 3 and 10 months in lactation; Bovine milk samples were collected from 30 clinically healthy
cows that were between 3 weeks and 10 months in lactation; data was normally distributed)

Gene name Protein name HM CM Log2
(HM/CM)

P value

LTF Lactotransferrin 6.87 5.03 6.13 0.000

ALB Serum albumin 6.02 4.46 5.18 0.000

FOLR1 Folate receptor alpha 5.16 3.85 4.35 0.000

CD14 Monocyte differentiation antigen CD14 5.37 4.51 2.87 0.000

LALBA Alpha-lactalbumin 7.16 6.44 2.38 0.001

TLR2 Toll-like receptor 2 4.30 3.70 2.01 0.008

KRT79 Keratin, type II cytoskeletal 79 4.47 4.10 1.23 0.586

ATP2B2 Plasma membrane calcium-transporting ATPase 2 3.38 3.10 0.95 0.164

YWHAZ 14-3-3 protein zeta/delta 4.29 4.02 0.89 0.084

FASN Fatty acid synthase 4.02 3.81 0.70 0.125

RRAS Related RAS viral (R-ras) oncogene homolog 3.67 3.46 0.67 0.591

CSN2 Beta-casein 7.23 7.08 0.48 0.729

SPP1 Osteopontin 5.06 5.09 −0.09 0.585

RAB10 Ras-related protein Rab-10 4.55 4.61 −0.20 0.720

EEF1A1 Elongation factor 1-alpha 1 4.17 4.23 −0.22 0.686

SAR1A GTP-binding protein SAR1a 4.35 4.43 −0.26 0.737

LSS Lanosterol synthase 4.27 4.39 −0.38 0.387

STX3 Syntaxin-3 4.64 4.76 −0.39 0.300

RAB5C Ras-related protein Rab-5C 3.58 3.73 −0.51 0.850

CD9 CD9 antigen 5.79 5.99 −0.67 0.245

XDH Xanthine dehydrogenase/oxidase 6.11 6.34 −0.76 0.047

ANXA2 Annexin A2 4.20 4.43 −0.76 0.081

STOM Erythrocyte band 7 integral membrane protein 5.28 5.55 −0.88 0.027

ACTG1 Actin, cytoplasmic 2 4.71 4.98 −0.90 0.026

CD59 CD59 molecule, complement regulatory protein 6.12 6.40 −0.94 0.057

FGFBP1 Fibroblast growth factor-binding protein 1 4.60 4.90 −1.00 0.017

CIDEA Cell death activator CIDE-A 4.57 4.87 −1.02 0.077

SAR1B GTP-binding protein SAR1b 3.41 3.72 −1.03 0.280

HSP90AA1 Heat shock protein HSP 90-alpha 2.95 3.31 −1.19 0.510

RAB1A Ras-related protein Rab-1A 4.68 5.06 −1.24 0.021

EHD4 EH domain-containing protein 4 3.53 3.91 −1.26 0.077

BTN1A1 Butyrophilin subfamily 1 member A1 6.80 7.32 −1.70 0.001

PLIN2 Perilipin-2 6.24 6.80 −1.87 0.001

GNB1 Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-1 3.79 4.36 −1.87 0.006

VAT1 Synaptic vesicle membrane protein VAT-1 homolog 3.98 4.55 −1.88 0.003

YWHAB 14-3-3 protein beta/alpha 3.03 3.60 −1.91 0.432

UBC Polyubiquitin-C 3.56 4.16 −2.02 0.001

RAB18 Ras-related protein Rab-18 5.29 5.93 −2.11 0.001

MUC1 Mucin-1 3.79 4.47 −2.26 0.046

RAC1 Ras-related C3 botulinum toxin substrate 1 3.85 4.60 −2.48 0.017

RAB2A Ras-related protein Rab-2A 3.93 4.70 −2.57 0.000
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cascades, such as C3, complement factor I (CFI), com-
plement factor B (CFB), SERPINA1, antithrombin-III
(SERPINC1), and alpha-2-HS-glycoprotein (AHSG) dis-
cussed before [13], CLU, alpha-1-acid glycoprotein 1
(ORM1), actin, cytoplasmic 1 (ACTB), LTF, SPP1, and
PIGR also showed close interactions in both human and
bovine milk serum (Fig. 4).
In order to compare the common human and bovine

milk serum proteome at the network level, we converted
our expression data to co-expression networks, and ob-
tained available protein-protein interaction data for both
species. Analysis of protein-protein interaction data indi-
cated that the milk serum proteins quantified in our
study are highly connected. For example, 310 interac-
tions were observed for 66 human milk serum proteins,
which is roughly 50 times higher than the number of
interactions expected for randomly chosen proteins. The
observed high interaction density was statistically
significant according to the statistical test provided by
STRING (p < 10−6).
Comparing the co-expression networks to each other,

for 34 proteins quantified in every time point in both
human and bovine milk serum, 18 were aligned to the
equivalent protein in the other species. For these pro-
teins, if they have expression similarity with another pro-
tein in human milk, it is likely that they also have
expression similarity with that protein in bovine milk,
and vice versa. For the other 16 proteins, network align-
ment indicated that this was not the case. In other
words, these proteins have expression similarities with
different proteins in human milk than in bovine milk,
and are indicative of changes in the expression network
between the two species (Fig. S1). The similarity between

the human and bovine expression networks was also
quantified using the correlation between the expression
correlation coefficients. This resulted in a Pearson cor-
relation coefficient of R = 0.23 (p < 10−7) between the ex-
pression Pearson correlation coefficients in human and
bovine milk serum proteome. Comparing the human co-
expression network with the protein interaction net-
work, for 34 proteins, 17 were aligned to themselves. For
these proteins, if they have expression similarity with an-
other protein, it is likely that they also have protein
interaction with that protein. Out of these, 13 proteins
were among the above-mentioned 18 proteins which
were aligned to the equivalent protein in the human-
bovine co-expression network alignment. This indicates
a common core of 13 proteins with relatively highly
conserved interaction in each of the networks (Fig. 5).
These include the immune-related C3, CLU, ACTB,
SERPINA1, SPP1, PIGR, and LTF.
The large agreement between co-expression networks

and protein interaction networks observed based on the
network alignment (Additional file 2: Figure S1 and
Additional file 3: Table S2) was confirmed by analysing
the relation between interaction status in the protein-
protein interaction network, and expression correlation
(both in human and bovine milk, Additional file 4: Table
S3). The average expression correlation coefficient of non-
interacting proteins is −0.06 +/−0.37, whereas for interact-
ing proteins it is 0.18+/−0.37 (human) and 0.14+/−0.51
(bovine) respectively (Fig. 6). According to a Kolmogorov-
Smirnov test, the differences between the distribution of
correlation coefficients for interacting and for non-
interacting proteins is significant: p ~ 10−5 (human interact-
ing vs non-interacting) and p ~ 10−3 (bovine interacting vs

Table 1 Quantitative comparison of overlap human milk MFGM and bovine milk MFGM (Bold proteins are significantly different
proteins by one-way ANOVA; the values are log10 average iBAQ values of proteins; Human milk samples were collected from 10
healthy mothers that were between 3 and 10 months in lactation; Bovine milk samples were collected from 30 clinically healthy
cows that were between 3 weeks and 10 months in lactation; data was normally distributed) (Continued)

PIGR Polymeric immunoglobulin receptor 5.17 5.99 −2.73 0.000

NUCB1 Nucleobindin-1 2.58 3.54 −3.22 0.067

YKT6 Synaptobrevin homolog YKT6 3.68 4.64 −3.22 0.000

FABP3 Fatty acid-binding protein, heart 5.09 6.09 −3.33 0.001

CSN1S1 Alpha-S1-casein 6.69 7.79 −3.66 0.000

ABCG2 ATP-binding cassette, sub-family G, member 2 4.92 6.05 −3.75 0.000

ACSL1 Acyl-CoA synthetase long-chain family member 1 3.64 4.81 −3.89 0.000

HSPA8 Heat shock cognate 71 kDa protein 3.19 4.41 −4.06 0.000

DHRS1 Dehydrogenase/reductase (SDR family) member 1 3.77 5.03 −4.17 0.000

CD36 Platelet glycoprotein 4 4.78 6.25 −4.90 0.000

GNB2 Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-2 3.40 5.34 −6.43 0.000

IGL@ IGL@ protein 4.39 6.49 −6.96 0.000

MFGE8 Lactadherin 4.46 6.72 −7.53 0.000
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Table 2 Quantitative comparison of overlap human milk serum and bovine milk serum (Bold proteins are significantly different
proteins by one-way ANOVA; the values are log10 average iBAQ values of proteins; Human milk samples were collected from 10
healthy mothers that were between 3 and 10 months in lactation; Bovine milk samples were collected from 30 clinically healthy
cows that were between 3 weeks and 10 months in lactation; data was normally distributed)

Gene name Protein name HS CS Log2 (HS/CS) P value

ALB Serum albumin 7.30 5.27 6.75 0.000

FASN Fatty acid synthase 4.38 2.40 6.59 0.000

XDH Xanthine dehydrogenase 5.36 3.59 5.86 0.000

SERPINA3 Alpha-1-antichymotrypsin 5.44 4.02 4.72 0.000

LTF Lactoferrin 7.17 5.84 4.44 0.002

PRSS1 Alpha-trypsin chain 1 6.74 5.42 4.39 0.000

CD14 Monocyte differentiation antigen CD14 5.52 4.24 4.23 0.000

CLU Clusterin 5.74 4.64 3.66 0.002

CSN2 Beta-casein 7.80 6.79 3.34 0.002

LDHB L-lactate dehydrogenase B chain 4.25 3.30 3.16 0.124

SERPINA1 Alpha-1-antitrypsin 5.38 4.62 2.52 0.007

PIGR Polymeric immunoglobulin receptor 6.47 5.84 2.08 0.003

GC Vitamin D-binding protein 5.20 4.64 1.89 0.026

LPL Lipoprotein lipase 4.05 3.56 1.65 0.043

SPP1 osteopontin 6.35 5.95 1.34 0.107

HSPA8 Heat shock 70 kDa protein 8 3.89 3.51 1.25 0.277

LALBA Alpha-lactalbumin 7.79 7.49 1.00 0.073

SERPINF2 Alpha-2-plasmin inhibitor 3.89 3.60 0.95 0.302

FABP3 Fatty acid-binding protein 3 5.33 5.13 0.66 0.359

B2M Beta-2-microglobulin 5.47 5.36 0.37 0.779

BTN1A1 Butyrophilin subfamily 1 member A1 5.60 5.53 0.23 0.679

NUCB2 Nucleobindin 2 4.44 4.40 0.12 0.543

PLIN2 Perilipin-2 4.49 4.46 0.10 0.943

CSN1S1 Alpha-S1-casein 7.33 7.31 0.10 0.836

APOE Apolipoprotein E 3.81 3.99 −0.59 0.285

SERPINC1 Antithrombin-III 3.86 4.05 −0.64 0.677

RAB18 Ras-related protein Rab-18 3.70 3.96 −0.86 0.725

MFGE8 Lactadherin 4.88 5.16 −0.94 0.402

NPC2 Epididymal secretory protein E1 4.49 4.89 −1.32 0.513

C3 Complement C3 4.56 4.96 −1.33 0.074

AZGP1 Zinc-alpha-2-glycoprotein 4.88 5.32 −1.47 0.197

AHSG Alpha-2-HS-glycoprotein 4.32 4.83 −1.69 0.149

IGL@ IGL@ protein 6.19 6.76 −1.88 0.025

CFB Complement factor B 2.66 3.27 −2.03 0.138

ORM1 Alpha-1-acid glycoprotein 1 4.94 5.56 −2.04 0.298

FGFBP1 Fibroblast growth factor-binding protein 1 3.69 4.64 −3.16 0.002

LPO Leucine-rich alpha-2-glycoprotein 4.25 5.23 −3.26 0.004

NUCB1 Nucleobindin 1 4.05 5.35 −4.30 0.008

IDH1 Isocitrate dehydrogenase 1 3.00 4.48 −4.92 0.007
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non-interacting), respectively. Similarly, a Mann–Whitney
U Test indicated that the means are significantly different
(p ~ 10−5 for human interacting vs non-interacting and
p ~ 0.005 for bovine interacting vs non-interacting).

Discussion
Previous studies described some comparisons of the
milk proteome between species [20–22]; however, they
only used single samples, either mature milk collected at
certain lactation stages or a pooled samples from differ-
ent lactation stage. Also some reviews [23, 24] on milk
proteome were based on single species, with no compar-
isons between different species. This is because the data
they used are from different studies. Differences in lacta-
tion stage, differences in sample preparation methods,
and differences in instruments make it difficult to com-
pare the proteome between species at the same time
points over lactation. This study was the first one to
compare the changes of milk protein profile between hu-
man and bovine species at the same time points from
colostrum to 6 months lactation by using the same sam-
ple preparation method and the same instrument. Our
comparative analysis between the human and bovine lac-
tation proteome was performed by reanalysing data from
several of our previous studies [8, 13, 16–18]. The time-
based comparison between human and bovine milk pro-
teins, may help us to know better the differences in the

needs between infants and calves. This may also provide
guidance on the improvement of infant formula com-
position on different stages. Although the data interpret-
ation of the lactation stage studies is limited by the small
sample size (n = 4) for both species, the separate results
for bovine and human milk are similar to previously
published studies on the biological functions of bovine
and human milk protein, with many proteins in both
species contributing to nutrient transport and immune
protection [23, 24]. The annotation in this study gives a
first insight in the comparison in the milk proteomes be-
tween human and bovine and their changes over lacta-
tion. The network analysis indicates that both the
biological functions and the concentration of proteins
have similarities between human and bovine milk. The
reanalysed results in the current study should contribute
to better understanding of the differences and similar-
ities in the biological functions and micronutrients be-
tween human and bovine milk proteome.
A total of 390 proteins were quantified using Max-

quant in both human and bovine milk (Fig. 1), which is
higher compared to our previous study [8]. However, the
number of identified proteins were lower than that re-
ported in previous studies [10, 20, 21, 23, 24]. First, this
comparison is based on one study not on a large number
of reviewed studies [23, 24]. Second, the lower number
of identified proteins can be related to both the

Fig. 3 The relative changes of enzyme (a), immunity (b) and transport proteins (c) over lactation between human and bovine milk. The
percentage is calculated through the total iBAQ value of proteins in each biological function group divided by the total iBAQ value of proteins
belonging to these three groups
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identification criteria (reducing identification confi-
dence) and the extensive protein fractionation (increas-
ing the proteome coverage but decreasing the precision
of protein quantification), as discussed in our previous
paper [16]. Moreover, Maxquant was time cost-efficient
in protein quantification. This indicates the advantages
of Maxquant in quantifying milk proteins. The higher
number of quantified proteins in data set 1 than data set
2 can be related to the differences in the preparation
methods. Label free was used for dataset 1 and dimethyl
labelling was used for dataset 2. The shift from label free
to dimethyl labelling in two studies is because dimethyl
labelling is much more sensitive and precise to pick
up small differences between two samples [25]. The
lower number of quantified proteins in our studies
compared with previous studies (e.g. 573 proteins
from bovine milk [23], 1606 [22] and 976 [15] pro-
teins from human milk) can be related to the exten-
sive protein fractionation in these previous studies
and less strict identification criteria as discussed in
our previous paper [16].

The higher number of quantified MFGM proteins than
milk serum proteins in both human and bovine (data set
1) is consistent with the numbers of identified proteins
reported previously [8]. It is not surprising, as MFGM
represent the epithelial cell, the place where the milk fat
is synthesised and secreted [26, 27]. The low amount of
transport proteins in human milk can be mainly related
to the absence of the major transport protein β-
lactoglobulin (LGB) in human milk [28], which is the
most abundant protein in bovine milk serum. In
addition, the lower concentration of lipid synthesis and
secretion proteins in human milk (Table 1 and 2) also
contributes to the relatively low amount of transport
proteins in human milk.
The relative high amount of enzymes (Fig. 3) and the

high biological enrichment (Additional file 1: Table S1)
in human milk can probably be attributed to the imma-
ture gastrointestinal tract of infants at birth. Although
the development of the gastrointestinal tract starts from
the fetal stage, the maturation of the gastrointestinal
digestive function is not complete at birth [29]. It

Fig. 4 The changes in the protein concentration from human and bovine milk over lactation (B-bovine milk; H-human milk)
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experiences a dramatic switch in the nutrients from am-
niotic fluid before birth to colostrum after birth and the
energy supply switches from glucose-dominated to lipid-
dominated [30]. This transition requires the digestion of
lipids and proteins prior to their absorption in the
gastrointestinal tract [30]. The high abundant enzymes
related to lipid and protein degradation in human milk,
such as bile salt-activated lipase, lipoprotein lipase, tryp-
sin, and cathepsin D [31], suggests that human milk it-
self contributes to the digestive capacity, thereby being
able to more effectively deal with immature luminal di-
gestion [32]. The differences in the dominant digestive
enzymes between human milk (bile salt-activated lipase)
and bovine milk (ribonuclease pancreatic), which have
been discussed in our previous papers [17] may thus
reflect the differences in the needs for support of the di-
gestion system between infants and calves.
Previous studies have reported that calves develop

their own immune system in a few weeks [33], whereas

infants produce their own immunoglobulins only after 2
or 3 months [15]. The relatively higher amount and
slower decrease of immune-related proteins in human
milk (Fig. 3) may be related to the slower maturation of
immune system in infants than calves, as hypothesized
before [8]. This hypothesis is consistent with the in-
depth comparison between human and bovine milk
proteome (Tables 1 and 2, Figs. 3 and 4).
However, the common proteins present in human and

bovine milk (Fig. 1) suggest the similarity in the milk
proteome between human and bovine. Several common
immune-related proteins in the network analysis of both
biological functions and co-expression levels (Fig. 5) in-
dicate the comparable immunological functions of milk
proteins in protecting the neonate. In addition to the
importance of dominant immune-related proteins, such
as LTF and immunoglobulins discussed previously [14,
15], the low abundant immune-related proteins, includ-
ing C3, CFB, SERPINA1, ACTB, and SPP1 (Fig. 5), play

Fig. 5 Common conserved core observed in network alignment between protein interaction network and bovine and human co-expression
networks. Edge colors indicate in which of the networks interaction occur: only in human co-expression network (red), only in bovine co-expression
network (blue), in both human and bovine co-expression network (purple), in human co-expression network and in protein interaction network (black),
or other combinations of networks (grey). In addition, line type differentiates interactions occurring only in one network (dashed lines) from interactions
occurring in multiple networks (straight lines)
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important roles in the immune system, especially innate
immune system [10, 15]. The high abundance of innate
immune-related proteins in early lactation (Fig. 4) may
be due to its rapid reaction against broad groups of
pathogens in the gastrointestinal tract of the neonate [8,
34], especially just after birth. SERPINA1 plays a dual
role in regulating the complement and coagulation path-
way [35], but also protecting the immune-related pro-
teins against degradation during digestion. ACTB not
only plays a role in the cell cytoskeleton but is also in-
volved in innate immune response, according to research
using a mice model [36]. SPP1 could protect the intes-
tinal tract of infants against pathogens or bacteria, due
to its cytokine-like properties and it being a key factor in
the initiation of T helper 1 immune responses [37].
PIGR is the receptor of immunoglobulins A and M, fa-
cilitating their secretion in the mammary gland. The
high correlation between SERPINA1, LTF, C3, ACTB,
SPP1, and PIGR (Fig. 5) in both human and bovine milk
reflects the interactions between innate and adaptive
immune system and the complex nature of biological
interrelationships between milk proteins in protecting
the neonate.
The other common proteins in Fig. 5, LTF, TF, ALB,

vitamin D-binding (GC), play roles in transport and de-
livery of nutrients through binding minerals, vitamins,
fatty acid, steroids, glucocorticoid/progestin, and heme

derivatives, and thus facilitate their uptake in the intes-
tinal tract [38]. The correlation of these proteins in both
human and bovine milk (Fig. 5) could be related to need
for providing this range of micronutrients that are ne-
cessary for the growth of the neonate.
The distribution of expression correlation coefficients

(Fig. 6) over lactation in both human and bovine milk
proteome for protein pairs not interacting in the protein
interaction network is shifted towards negative values
compared to the distribution for protein pairs that are
interacting. This suggests an interplay between protein-
protein interactions and expression similarity. Such simi-
larity between these different types of networks was also
observed based on network alignment. In all mammals,
milk provision is a complex process with changes in
milk composition and interactions between parent and
young beyond the straightforward nutritional function
[39]. The similarity in the milk proteome may be related
to their main functions in providing nutrients and pro-
tection to the neonate. The differences in the milk
proteome between species may be due to their unique
lactation strategies to accommodate reproductive suc-
cess and adapt to the specific environment. This sug-
gests an interplay between protein-protein interactions
and expression similarity.
The comparison of the milk proteome between human

and bovine over lactation provides more information on

Fig. 6 Proteins interacting in the protein-protein interaction network have higher expression correlation than proteins not interacting. Histogram
of expression Pearson correlation coefficients for human (green) and bovine (red) protein pairs, separately for interacting (straight lines) and for
non-interacting (dashed lines) protein pairs
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the similarity and differences of milk protein profile over
lactation. This study can be used as a start point for fur-
ther biological function investigation of proteins dis-
cussed in the paper. Proteins differing between human
and bovine are interesting from an infant nutrition
point-of-view. Further evaluation of the biological sig-
nificance of these proteins, and on the feasibility of the
application of such proteins in infant formula can be
conducted. With respect to the proteins with high similar-
ity based on the network alignment, they may still differ in
digestibility or have different nutritional values due to the
differences in amino acid sequence and post-translation
modifications between species. Further studying this will
contribute to a better understanding of protein functional-
ity in human and bovine milk, and may provide guidance
on the improvement of infant formula.

Conclusions
The qualitative and quantitative differences between
human and bovine milk proteome as well as the dif-
ferences in the concentration changes over lactation
help us to better understand the role of milk proteins
in the development of the digestive and immune sys-
tem of the neonates in general, including differences
between infants and calves. The similarities in both
protein-protein interaction network and expression
correlation between human and bovine milk proteome
indicates the importance of milk proteins in providing
nutrients and protection to the neonate. This in-
depth comparison between human and bovine milk
contributes to a better understanding on the bio-
logical functions, especially immunological functions,
of milk proteins between human and bovine.

Methods
Materials
In this study, we reanalysed the data collected on a single
instrument [8, 13, 16–18] from both human and bovine
milk proteome for an in-depth comparison throughout
lactation.

Data set 1-Qualitative and quantitative differences between
human and bovine milk proteome study
This data is based on the study of Hettinga, et al. [8].
Human milk was collected from 10 healthy mothers be-
tween 3 and 10 months in lactation. Samples of 10 mL
were collected and frozen for later analysis. After thaw-
ing, the 10 samples were pooled. One bovine tank milk
sample was collected from the university farm “De Osse-
kampen” in Wageningen, The Netherlands, which was
milk from 30 clinically healthy cows which were between
3 weeks and 10 months in lactation.

Data set 2-The comparison in the changes of human and
bovine milk proteome over lactation
This data set is based on our previous studies [13, 16–
18]. Human milk samples were collected from women
who gave birth at the obstetric department in VU med-
ical center (VUmc) in Amsterdam. All women who de-
livered singleton term infants (gestational age 37–42
weeks) were eligible for this study. Women with haem-
olysis elevated liver enzymes, low platelet syndrome, his-
tory of breast surgery, and (gestational) diabetes mellitus
were excluded. The samples collected at week 1, 2, 3, 4,
8, 16, 24 were used for this study. Approximately 5–
10 mL was collected in a polypropylene bottle after 1
min of pumping for every sample. and stored at −18 °C
immediately afterwards.
Bovine milk was collected from four healthy cows in a

farm in Zaffelaere, Belgium. The cows were milked using
an automatic milking system. Samples were collected
from day 0 to the end of lactation. Samples collected at
day 0, 0.5, 1, 2, 3, 5, 9, 14, month 1, 2, 3, 6, 9 and the lat-
est time point of the lactation (10 months for cow 1,
11 months for cow 2 and 12 months for cow 3, the latest
time point was missed for cow 4) were used for this
study. The samples were frozen immediately at −20 °C
after collection and transferred frozen to the laboratory
for further analysis.

Methods
Milk serum separation
The separation of milk serum was performed according
to a previous study [8]. The samples were centrifuged at
1,500 × g for 10 min at 10 °C (Beckman coulter Avanti J-
26 XP centrifuge, rotor JA-25.15). The milk fat was re-
moved and the obtained supernatant was transferred to
the ultracentrifuge tubes followed by ultracentrifugation
at 100,000 × g for 90 min at 4 °C (Beckman L-60, rotor
70 Ti). After ultracentrifugation, samples were separated
into three phases. The top layer was remaining milk fat,
the middle layer was milk serum (with some free soluble
caseins), and the bottom layer (pellet) was casein. Milk
serum was used for filter aided sample preparation as
described below after the measurement of protein con-
tent by the BCA protein assay (Fisher Scientific).

Proteomic techniques
Filter aided sample preparation Filter aided sample
preparation (FASP) was performed as previously de-
scribed [40]. Milk serum samples (20 μL), including
samples of each time point and pooled samples of each
included woman, were diluted in 100 mM Tris/HCl
pH 8.0 + 4% SDS + 0.1 M Dithiotreitol (SDT-lysis buffer)
to get a 1 μg/μL protein solution. Samples were then in-
cubated for 10 min at 95 °C, and centrifuged at 18407 g
for 10 min, after cooling down to room temperature.

Zhang et al. Proteome Science  (2017) 15:1 Page 11 of 14



Twenty μL of each sample were directly added to the
middle of 180 μL 0.05 M iodoacetamide/100 mM Tris/
HCl pH 8.0 + 8 M urea (UT) in a low binding Eppendorf
tube and incubated for 10 min while mildly shaking at
room temperature. The sample was transferred to a Pall
3 K omega filter (10–20 kDa cutoff, OD003C34; Pall,
Washington, NY, USA) and centrifuged at 15871 g for
30 min. Three repeated centrifugations at 15871 g for
30 min were carried out after adding three times 100 μL
UT. After that, 110 μL 0.05 M NH4HCO3 in water
(ABC) were added to the filter unit and the samples were
centrifuged again at 15871 g for 30 min. Then, the filter
was transferred to a new low-binding Eppendorf tube. One
hundred μL ABC containing 0.5 μg trypsin were added
followed by overnight incubation at room temperature. Fi-
nally, the sample was centrifuged at 15871 g for 30 min,
and 3.5 μL 10% trifluoroacetic acid (TFA) were added to
the filtrate to adjust the pH value of the sample to around
2. These samples were ready for dimethyl labeling.

Dimethyl labeling The dimethyl labeling was carried
out by on-column dimethyl labeling according to [22].
The trypsin digested samples of pooled milk serum from
each individual mothers and cows collected at the
different time points were labeled with light reagent (the
mix of CH2O and cyanoborohydride), whereas trypsin
digested milk serum samples of the individual mothers
and cows at each time point were labeled with heavy re-
agent (the mix of CD2O and cyanoborohydride). Stage
tips containing 2 mg Lichroprep C18 (25 um particles)
column material (C18+ Stage tip) were made in-house.
The C18+ Stage tip column was washed 2 times with
200 μL methanol. The column was conditioned with
100 μL of 1 mL/L formic acid in water (HCOOH) after
which samples were loaded on the C18+ Stage tip col-
umn. The column was washed with 100 μL 1 mL/L
HCOOH, and then slowly flushed with 100 μL labeling
reagent (0.2% CH2O or CD2O and 30 mM cyanoborohy-
dride in 50 mM phosphate buffer pH 7.5) in about
10 min. The column was washed again with 200 μL
1 mL/L HCOOH. Finally, the labeled peptides were
eluted with 50 μL of 70% acetonitrile/30% 1 mL/L
HCOOH from the C18+ Stage tip columns. The samples
were then dried in a vacuum concentrator (Eppendorf
Vacufuge®) at 45 °C for 20 to 30 min until the volume of
each sample decreased to 15 μL or less. The pairs of
light dimethyl label and heavy dimethyl label were then
mixed up and the volume was adjusted to exactly
100 μL by adding 1 mL/L HCOOH. These samples were
ready for analysis by LC-MS/MS.

LC-MS/MS Eighteen μL of the trypsin digested and di-
methyl labeled milk fractions were injected on a 0.10 ×
30 mm Magic C18AQ 200A 5 μm beads (Michrom

Bioresources Inc., USA) pre-concentration column (pre-
pared in house) at a maximum pressure of 270 bar. Pep-
tides were eluted from the pre-concentration column
onto a 0.10 × 200 mm Prontosil 300-3-C18H Magic
C18AQ 200A 3 μm analytical column with an aceto-
nitrile gradient at a flow of 0.5 μL/min, using gradient
elution from 8 to 33% acetonitrile in water with 0.5 v/v%
acetic acid in 50 min. The column was washed using an
increase in the percentage acetonitrile to 80% (with 20%
water and 0.5 v/v% acetic acid in the acetonitrile and the
water) in 3 min. A P777 Upchurch microcross was posi-
tioned between the pre-concentration and analytical col-
umn. An electrospray potential of 3.5 kV was applied
directly to the eluent via a stainless steel needle fitted
into the waste line of the microcross. Full scan positive
mode FTMS spectra were measured between m/z 380
and 1400 on a LTQ-Orbitrap XL (Thermo electron, San
Jose, CA, USA). CID fragmented MS/MS scans of the
four most abundant doubly- and triply-charged peaks in
the FTMS scan were recorded in data-dependent mode
in the linear trap (MS/MS threshold = 5.000).

Data analysis
The acquired datasets were analyzed by using MaxQuant
(Version 1.5.2.8, http://www.maxquant.org/) and the
built-in Andromeda search engine with a UniProt hu-
man and bovine database (http://www.uniprot.org/;
accessed March 2012). The search parameters were as
follows: variable modifications of protein N-terminal
acetylation and methionine oxidation, and fixed modifi-
cation of cysteine carbamidomethylation. The minimum
peptide length was set to 7 amino acids and a maximum
of 2 missed cleavages was allowed for the search. Tryp-
sin/P was selected as the semi-specific proteolytic en-
zyme. The global false discovery rate (FDR) cut off used
for both peptides and proteins was 0.01 [41]. Label-free
quantitation was performed in MaxQuant. To further
improve the quantification accuracy, only the razor/
unique peptides were used for quantitative calculations.
The other parameters used were the default settings in
MaxQuant software for processing MS/MS data.
All known contaminants (i.e. keratins, trypsin), and

proteins detected in less than half of the samples, were
removed from each sample set of proteins identified.
The origin and function of the identified proteins was
taken from UniProtKB (http://www.uniprot.org/; accessed
March 2012) for recommended protein name, gene name,
and protein function. It was verified that the human and
bovine proteins with the same protein name were ortholo-
gous using a reciprocal best BLAST hit approach. DAVID
Bioinformatics Resource 6.7 (https://david.ncifcrf.gov/)
was used for protein biological function classification and
protein group enrichment. Protein concentrations were
calculated as the average of all peptide peak intensities
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from five replicates divided by the number of theoretically
observable tryptic peptides (intensity based absolute quan-
tification, or iBAQ, [42, 43]). Perseus software v.1.2.0.16
(Martinsreid, Germany) was used to test for hierarchical
clustering and significant differences between species.
Hierarchical clustering in Perseus software was used for
clustering proteins identified in both human and bovine
milk based on their relative abundance. This procedure is
performing hierarchical clustering of rows (proteins) and
columns (samples) and produces a visual heat map repre-
sentation of the clustered matrix. The ratios between the
concentration found in human milk (milk fat globulin
membrane-MFGM and serum) and bovine milk (MFGM
and serum) were calculated as the difference (on 10log
scale) of the iBAQ value of the human MFGM versus the
bovine MFGM and human serum versus bovine serum.
ANOVA was applied to compare MFGM and serum in
both species, and the p-values obtained were adjusted with
false discovery rate (FDR)-based correction in order to ac-
count for the effect of multiple comparisons.
Protein-protein interactions for proteins in both human

and bovine milk proteome were obtained from STRING
[44]. In order to interpret the interaction density (number
of observed interactions divided by total possible number
of interactions) of milk proteins, this density was com-
pared with the interaction density of all human/bovine
STRING proteins. A statistical test for the significance of
the observed high density in the milk proteome was per-
formed using the approach provided by STRING [45].
For co-expression network analysis, a cutoff of 0.3 on

the absolute value of the Pearson correlation was ap-
plied, in order to get a number of interactions in the co-
expression networks that would be comparable to that
in the STRING interaction networks. Pinalog [46] was
used to align different networks to each other, taking
into account both sequence similarity between proteins
and topological similarity (i.e. similarity of interaction
partners for each protein). For visualization, VANLO
[47] and Cytoscape [48] were applied. Comparison of
distributions with Kolmogorov-Smirnov test was per-
formed using the R-function ks.test.
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Additional file 1: Table S1. The biological functional enrichment of
immunity, transport and enzyme protein groups in both human and
bovine milk. (DOCX 13 kb)

Additional file 2: Figure S1. Network alignment between bovine (red)
and human (green) co-expression networks. Equivalent nodes are con-
nected by thin straight lines and are at comparable positions in the two
networks. (TIF 18148 kb)

Additional file 3: Table S2. Alignment between bovine and human
co-expression networks. (DOCX 14 kb)

Additional file 4: Table S3. Alignment between protein interaction
network and human co-expression network. (DOCX 15 kb)
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