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Abstract
Background: Spectral counting is a shotgun proteomics approach comprising the identification
and relative quantitation of thousands of proteins in complex mixtures. However, this strategy
generates bewildering amounts of data whose biological interpretation is a challenge.

Results: Here we present a new algorithm, termed GO Explorer (GOEx), that leverages the gene
ontology (GO) to aid in the interpretation of proteomic data. GOEx stands out because it
combines data from protein fold changes with GO over-representation statistics to help draw
conclusions. Moreover, it is tightly integrated within the PatternLab for Proteomics project and,
thus, lies within a complete computational environment that provides parsers and pattern
recognition tools designed for spectral counting. GOEx offers three independent methods to query
data: an interactive directed acyclic graph, a specialist mode where key words can be searched, and
an automatic search. Its usefulness is demonstrated by applying it to help interpret the effects of
perillyl alcohol, a natural chemotherapeutic agent, on glioblastoma multiform cell lines (A172). We
used a new multi-surfactant shotgun proteomic strategy and identified more than 2600 proteins;
GOEx pinpointed key sets of differentially expressed proteins related to cell cycle, alcohol
catabolism, the Ras pathway, apoptosis, and stress response, to name a few.

Conclusion: GOEx facilitates organism-specific studies by leveraging GO and providing a rich
graphical user interface. It is a simple to use tool, specialized for biologists who wish to analyze
spectral counting data from shotgun proteomics. GOEx is available at http://pcarvalho.com/
patternlab.
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Background
Shotgun proteomics is a strategy capable of identifying
thousands of proteins in complex mixtures. Its methodol-
ogy comprises the pre-digestion of proteins followed by
peptide separation, fragmentation in a mass spectrometer,
and database search [1,2]. Multi-dimensional Protein
Identification Technology (MudPIT) is a shotgun pro-
teomics technique capable of identifying thousands of
proteins in proteolytically digested complex mixtures
[2,3]. MudPIT separates peptides according to two inde-
pendent physicochemical properties using two-dimen-
sional liquid chromatography (LC/LC) online with the
ion source of a mass spectrometer. This separation relies
on columns of strong cation exchange (SCX) and reversed
phase (RP) material, back to back, inside fused silica cap-
illaries. The chromatography proceeds in cycles, each of
which consists of increasing salt concentration to "bump"
peptides off the SCX followed by a hydrophobic gradient
to progressively elute peptides from the RP into the ion
source. This process identifies mixture components by
tandem mass spectrometry (MS/MS). Relative protein
quantitation can be obtained through tandem mass spec-
tral features (e.g., peptide hits, protein sequence coverage,
spectral counts) [1,3-5]. For example, Liu et al. demon-
strated that the number of tandem mass spectra obtained
for each protein, or "spectral count", linearly correlates
with its abundance in a mixture by two orders of magni-
tude [6]. Currently, spectral counting is a widely adopted
approach to characterize different states of biological sys-
tems according to protein expression differences.

Acquiring a holistic understanding over a large set of pro-
teins is not a simple task, but first insights can be obtained
by searching the Gene Ontology (GO) [7] annotations for
over-represented terms. GO is a standard for functional
annotation and consists of structured and controlled
vocabularies to classify terms into the following root cate-
gories (namespaces): molecular function, biological proc-
esses, and cellular components. Its structure follows that
of a directed acyclic graph (DAG); each term is a more spe-
cific child of one or more parents (i.e., directed edges
point in the direction of increasing specificity). In this
way, a convention named true path rule states that when-
ever a gene is annotated with a term, it is also implicitly
annotated with all (less specific) ancestors of that term.

Currently, there are several GO-based tools; some exam-
ples are: DAVID [8], GOMiner [9], and GoFish [10]. We
refer the reader to http://www.geneontology.org/
GO.tools.shtml for a more comprehensive listing. Even
though such tools are frequently used to analyze microar-
ray data, the ones specific for proteomics amount to very
few [11]. Moreover, most existing GO-based tools for pro-
teomics overlook expression fold changes and, as far as we
know, are not specialized in directly handling data from

differential proteomic spectral counting experiments. One
exception with relation to the use of fold changes is GESA
(Gene Enrichment Analysis) [12], which ranks genes
according to expression quantitation data and then corre-
lates them to search for enriched GO terms. However, lim-
iting the search to enriched terms can hide very subtle
results elucidated by individual proteins. In this respect,
we note that GOEx provides several exploratory methods
that are not bound to finding terms that are necessarily
enriched but could be related even to one single protein.

In this work we present a new GO-based tool, named GO
Explorer (GOEx), which is optimized to work with spec-
tral counting data from shotgun proteomics. This is
achieved, in part, because GOEx is natively integrated into
the PatternLab for Proteomics project [13] so it leverages
existing parsers, data normalization, and feature selection
algorithms designed to work with spectral counts. GOEx
allows one to explore data using several new approaches
as described in the Implementation section.

We demonstrate GOEx by using proteomic data acquired
from human glioblastoma multiform (GBM) cell lines
(A172) both before and after applying perillyl alcohol
(POH) to their medium. Briefly, POH is a naturally occur-
ring monoterpene found in lavender, cherries, and mint,
and is a promising chemotherapeutic agent. In human
cancer cells, POH has shown cytostatic and cytotoxic
effects [14-16], inducing apoptosis on lung [17], leukemia
[18], prostate [19], and breast [20] cancer cell lines. POH
is also under evaluation in several clinical trials, including
an ongoing phase I comprising GBM patients treated by
intranasal delivery that has shown promising results [21].

Experimental: preparation of the A172-POH 
dataset
Materials
Invitrosol™ and RapiGest™ SF acid-labile surfactant were
purchased from Invitrogen (Carlsbad, CA) and Waters
Corp. (Milford, MA), respectively. PPS Slient surfactant
was provided by Dr. Norris from Protein Discovery, Inc.
(Knoxville, TN). The proteases endoproteinase Lys-C and
trypsin (modified, sequencing grade) were obtained from
Roche. Human malignant glioma cells (A172) were
obtained from the American Type Culture Collection.
POH and other laboratory reagents were purchased from
Sigma-Aldrich (St. Louis, MO), unless noted otherwise.

Cell culture and POH treatment
The A172 cells were grown as monolayers in 25 cm2 tissue
culture flasks in Dulbecco's modified Eagle medium sup-
plemented with 0.2 mM non-essential amino acids, 10%
fetal calf serum, penicillin (60 μg/mL), streptomycin (100
μg/mL), and amphotericin B (fungizone, 2.5 mg/mL). For
sub-cultivations, confluent monolayers were gently
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washed with phosphate-buffered saline (PBS 1×) pH 7.2,
and after short trypsinization the cells were suspended in
culture medium. Three subcultures were treated with 1.8
mM POH (Sigma-Aldrich, 96%) during 1.5 h and three
other subcultures received no POH treatment; the cellular
morphology analyzed by an optical phase-contrast micro-
scope (Zeiss Axioplan, Thornwood, NY) and the cells were
photographed. The medium from all cultures was dis-
carded and the cells were rinsed twice with PBS (1×). The
cells were detached from the flask by exposing them dur-
ing 2 min in a solution of 0.25% trypsin-EDTA (1×). Then
the cells were re-suspended in the medium and a pellet
was obtained by centrifugation during 10 min at 500 RCF.
This procedure was performed three times. Proteins were
extracted from the cell pellets using the total protein
extraction kit from Biochain (Hayward, CA) according to
manufacturer's instructions.

Protein solubilization with MS-compatible detergents and 
trypsin digestion
Each protein pellet was re-suspended, independently,
with one of the following MS-compatible detergents: 5 μL
of Invitrosol (5× stock), RapiGest SF (1% stock), or 10 μL
of PPS (1% stock). We recall that these detergents are
called MS-compatible because they do not interfere with
the mass spectral acquisition, increase proteolytic effi-
ciency, and peptide and protein identifications in com-
plex protein mixtures analyzed by shotgun proteomics
[22]. The concentration of each detergent used in this
study was determined based on the maximum recom-
mended concentration suggested by the manufacturers.
Then the proteins were incubated at 60°C for 5 min and
completed with solvent (PPS reconstituted in the same
buffer, RapiGest reconstituted in 50 mM ammonium
bicarbonate, Invitrosol is already sold in solution) to a 50
μL final volume. All samples were sonicated for 2 h in a
water bath and digested with trypsin (1:50) for 16 h at
37°C.

Post-digestion
Following digestion, all reactions were acidified with 90%
(v/v) formic acid (2% final) to stop the proteolysis. Sam-
ples with RapiGest SF and PPS were acidified and incu-
bated at 37°C for additional 4 h to facilitate the hydrolysis
of the detergents. Then samples were centrifuged for 30
min at 14,000 rpm to remove insoluble material. The sol-
uble peptide mixtures were collected, dried by a Speed
Vac, reconstituted in 10 μL of buffer A (95% H2O (v/v),
5% acetonitrile (v/v), and 0.1% formic acid (v/v)), and
analyzed by MudPIT[1].

Protein identification by MudPIT
Approximately 70 μg of the digested peptide mixture were
loaded onto a biphasic (strong cation exchange/reversed
phase) capillary column and washed with a buffer con-

taining 5% acetonitrile, 0.1% formic acid diluted in HPLC
grade water. The two-dimensional liquid chromatography
separation and tandem mass spectrometry conditions
were as described by Washburn et al. [1]. The flow rate at
the tip of the biphasic column was 300 nL/min when the
mobile phase composition was 95% H2O, 5% ace-
tonitrile, and 0.1% formic acid. The ion trap mass spec-
trometer, Finnigan LCQ Deca XP (Thermo Finnigan, San
Jose, CA), was set to the data-dependent acquisition mode
with dynamic exclusion turned on. One MS survey scan
was followed by four MS/MS scans and 12 salt steps were
performed. Mass spectrometer scan functions and HPLC
solvent gradients were controlled by the Xcalibur data sys-
tem (Thermo Finnigan, San Jose, CA).

Tandem mass spectra were extracted from the raw files,
and a binary classifier, previously trained on a manually
validated dataset, was used to remove the low-quality MS/
MS spectra [23]. The remaining spectra were searched
against the Homo sapiens protein plus common contami-
nant proteins; all sequences were downloaded as FASTA-
formatted from the EBI-IPI protein database (database
version 3.23, released on November 2, 2006) [24]. To cal-
culate confidence levels and false-positive rates, a decoy
database that contained the reverse sequences of the orig-
inal dataset appended to the target database was used
[25], and the best matching sequences from the combined
database were indicated by SEQUEST [26]. The searches
were done on a cluster of Intel Xeon 80 processors run-
ning the Linux operating system. The peptide mass search
tolerance was set to 3 Da. No differential modifications
were considered. For the aqueous digestion, the mass of
the amino acid cysteine was statically modified by +57 Da
due to the carboxyamidomethylation of the sample. No
enzymatic cleavage conditions were imposed on the data-
base search, so the search space included all candidate
peptides whose theoretical mass fell within the 3 Da mass
tolerance window, regardless of their tryptic status.

The validity of peptide/spectrum matches was assessed in
DTASelect 2 [27] according to the SEQUEST cross-correla-
tion score (XCorr) and the SEQUEST normalized differ-
ence in cross-correlation score (DeltaCN). The search
results were grouped by charge state (+1, +2, and +3) and
tryptic status (fully tryptic, half-tryptic, and non-tryptic),
resulting in 9 distinct subgroups. In each of the sub-
groups, the distribution of XCorr and DeltaCN values for
the direct and decoy database hits was obtained, and the
two subsets were separated by quadratic discriminant
analysis. Outlier points in the two distributions (for
example, matches with very low XCorr but very high Del-
taCN) were discarded. Full separation of the direct and
decoy subsets is not generally possible; therefore, the dis-
criminant score was set such that a false-discovery rate of
5% was determined based on the number of accepted
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decoy database peptides. This procedure was independ-
ently performed on each data subset, resulting in a false-
positive rate independent of tryptic status or charge state.
In addition, a minimum sequence length of 7 amino-acid
residues was required, and each protein on the list was
supported by at least two peptide identifications unless
specified otherwise. These additional requirements, espe-
cially the latter, resulted in the elimination of most decoy
database and false-positive hits, as these tended to be
overwhelmingly present as proteins identified by single
peptide matches. After this last filtering step, the estimated
false-discovery rate was reduced to below 1%.

Selecting differentially expressed proteins with 
PatternLab's ACFold
ACFold is part of the PatternLab for Proteomics project
[13] and considers information from protein fold
changes, the AC test [28], and a false-discovery rate (FDR)
estimator [29] to pinpoint differentially expressed pro-
teins. We recall that the AC test can be used to calculate
the conditional probability of finding a spectral count of
x2 in biological state 2 given that a spectral count of x1 was
observed in biological state 1. The ACFold method was
chosen because it is designed to search for differential pro-
tein patterns in shotgun proteomic data and can be
applied even if the assays are not technical replicates, as in
our multi-surfactant shotgun proteomic approach
[13,22].

ACFold is effective because drawing conclusions using
only a fold change cutoff can shadow information from
low-level protein changes that might be important. To
account for such, ACFold relies on the AC test to fish out
proteins that, despite not having achieved a theoretical
optimal fold-cutoff, do nevertheless exhibit a difference in
spectral counts between states that is statistically signifi-
cant. Such proteins are put in evidence to be re-considered
in the final analysis or for further experimental validation.

We refer to Figure 1 to illustrate the output of PatternLab's
ACFold graphical user interface and also further details of
an ACFold analysis. We also remark that, additionally,
PatternLab incorporates the TFold method, in which the t-
test substitutes for the AC test, for use when 3 or more rep-
licate readings for each state are available.

In this work, PatternLab's parser was used to convert the
DTASelect files from all MudPIT assays into the unified
PatternLab format before loading them to the ACFold
tool. An FDR q-value of 0.1 and an AC test p-value of 0.05
were specified. The Row Sigma normalization [13] was
chosen for computing the fold changes. The fold change
cutoff of 2.5 was empirically specified so as to maximize
the number of proteins that satisfy both the FDR and the
AC test criteria. We note that higher fold change cutoffs

reduce the number of verified hypotheses, usually increas-
ing (decreasing) the number of proteins approved by the
FDR (AC test). Finally, a report listing the proteins that
satisfied all criteria (ACFoldReport) was exported to text
format. This report is also the input to the GOEx analysis.
We refer the reader to Figure 1 to illustrate PatternLab's
ACFold graphical user interface output of the identified
proteins' distribution.

Implementation
GO Explorer
GOEx was coded using C# 3.5 and carried a graphical user
interface for improved user experience. GOEx requires the
downloading of two files: the latest GO ontology (OBO
v.1.2 format), freely available at http://www.geneontol
ogy.org/GO.downloads.ontology.shtml, and the GOA
(gene ontology annotation) association file containing
the non-redundant, species-specific annotation, freely
available at http://www.ebi.ac.uk/GOA/goaHelp.html.
The latter is necessary to convert the IPI's (international
protein indexes), obtained during protein identification,
into the GO terms. In this work, we used the
gene_ontology_edit.obo (Feb. 08, 2008) and the
gene_association.goa_human (Feb. 03, 2008) files. From
then on, GOEx parses both files and performs various pre-
computations (e.g., mapping all terms descending from a
specific term) and associations to speed up the user's expe-
rience when analyzing data. All information is then com-
pacted into a binary representation, in a process known as
serialization, and saved to disk for quick retrieval during a
future use.

Finally, the GOEx panel is unlocked and the GO root
terms are listed in the interactive directed acyclic graph
(iDAG) interface. The user can then load a report of the
differentially expressed proteins (e.g., ACFoldReport) to
be analyzed in any of the GOEx study modes: iDAG-
driven, specialist-driven, and automatically driven. For
convenience, henceforth we refer to the proteins reported
in the ACFoldReport as "reported proteins".

Calculating the over-representation p-value
First the accession number listed in the "reported pro-
teins" file are converted into their equivalent GO terms.
This conversion entails a mapping that can occur at differ-
ent levels of the GO hierarchy (not only at the leaves) and
sometimes a protein can be mapped onto more than one
GO term. While the conversion takes place, tags are main-
tained for each term indicating which proteins were
mapped onto it.

The over-representation p-value of term termed as S rela-
tive to the namespace of source (least specific term) G is
computed as follows. Let g denote the total number of GO
terms in the namespace of source G and let s - 1 be the
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number of GO terms that descend from S–thus s includes
S itself and its descent. The overrepresentation p-value of
S must be computed so as to reflect the distinct proteins
that were mapped onto the s terms. Counting the number
of such proteins from the tags maintained during the
mapping process is not enough because, in principle, the
result may amount to more than s. Letting c(S) be this
number of distinct proteins, the count we actually use is
then k = min{s, c(S)}. The probability of observing these
k distinct proteins for a randomly selected S can now be
estimated by the hypergeometric distribution: if X is the
corresponding random variable, then

where t = min{g, c(G)}, following the same reasoning that
led to the definition of k. This given, we express the over-
representation p-value of term S as the probability of
observing k or more distinct proteins mapped onto the s
terms, that is,
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Fold change versus AC test probability plotFigure 1
Fold change versus AC test probability plot. This plot was obtained using PatternLab's ACFold algorithm and displays the 
results obtained with the multi-surfactant shotgun proteomic approach when comparing the A172 cell lines before and after 
the treatment with perillyl alcohol. Each protein (represented as a dot) was mapped according to its log2(fold change) on the 
ordinate (y) axis and -log2(1-(AC test p-value)) on the abscissa (x) axis. A total of 104 proteins (blue dots) were selected as dif-
ferentially expressed because they satisfied both the AC test and the FDR q-value specified cutoffs. 23 proteins (orange dots) 
did not meet the fold change cutoff but were indicated as statistically differentially expressed, therefore deserving further anal-
ysis. 267 proteins (green dots) met the fold change cutoff, but the AC test indicated that this happened by chance. 2293 pro-
teins (red dots) were pinpointed as not differentially expressed between classes because they failed both the AC test and the 
fold change cutoffs. The number of dots does not match the number of identified proteins due to the many overlaps.
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Clearly, the lower this p-value the greater the probability
mass that lies strictly below k.

Data Analysis
a) The GOEx iDAG-driven mode
This strategy is designed to help guide one's biological
questions by leveraging the GO through the iDAG cou-
pled with graphing tools. By clicking on an iDAG term, its
child terms appear listed below it; for each child, its over-
representation p-value (described above) and the sum of
the protein fold changes reported for it are computed.
Terms having no relation to the reported proteins are
automatically deleted to keep the biological questions on
track. A "distribution pie chart" (Figure 2A) and a "fold
change versus over-representation plot" (Figure 2B) of the
displayed iDAG leaf terms are presented. A report table
discriminating all calculations and the reported proteins
related to each term is also made available. All this infor-
mation can aid in choosing which term to explore next, if
any, thus helping drive one's biological questions. In gen-
eral, terms having low p-values and/or high-magnitude
fold changes are good candidates, but there are important
exceptions. For example, while exploring for putative
molecular functions of our reported proteins, we noted
that the "molecular transducer activity" GO term pre-
sented a significant fold change (fold = 12) but was not sta-
tistically over-represented (p = 0.97). Even so, by further
expanding it and examining its child terms, GOEx
revealed the "G-protein coupled receptor activity" term
(fold = -8, p = 0.89) to be associated with our reported pro-
teins, which is only as expected according to previous
work related to the effects of POH on tumor cells [21].
This example illustrates that it is possible to draw the
important conclusions from fold change data only. GO
tools, however, tend to overlook this, being generally lim-
ited to taking into account over-representation p-values
exclusively.

b) The GOEx specialist-driven mode
This mode allows an expert to pose questions and retrieve
answers in the light of the GO and the reported proteins.
For example, it is known that the Ras signaling pathway
has a key role in the pathogenesis of GBM by acting as a
primary switch that mediates external signals to numer-
ous intracellular signaling pathways [30]. It is also known
that POH affects the levels of Ras-related proteins and Ras
isoprenylation, thereby altering cellular physiology [31].
Entering the key word "Ras" to the search facility of the

GOEx specialist-driven mode produced, in a log file, a list
of all GO terms containing the key word in their names or
descriptions. Terms related to the reported proteins
(either through fold change or over-representation) were
analyzed, plotted, and added to the report table. The
result pointed to the "Ras protein signal transduction"
term as being related to our dataset despite not quite qual-
ifying as statistically over-represented (p = 0.06 against a
p-value cutoff of 0.05). This example indicates that, even
though a term's over-representation may not be indisput-
ably significant (and thus the term might not be detected
during an automatic search, as in most GO tools), that
term may nevertheless embody the correct answer. In the
case at hand, the literature gives plenty of supporting evi-
dence to corroborate the hypothesis of alterations in the
Ras pathway. This is further addressed in the Results and
discussion section.

c) The GOEx automatic mode
The automatic mode (search all) performs an extensive
analysis by searching for relations between the reported
proteins and each and every GO term. This method
requires the user to specify the desired minimum number
of proteins related to a GO term, a minimum GO depth,
and an over-representation p-value and optionally a false-
discovery rate [29]) cutoff. We define GO depth as the
shortest path from a term to its root. From then on, GOEx
will evaluate all GO terms. The ones bearing relation to
the reported proteins will be listed in the report table
(described in section d) and plotted in the "distribution
pie chart" and "fold change versus over-representation
plot". This mode is optimized for multi-core processors
and relies on concurrent computation to speed up its task.

d) The GOEx report table
All GOEx query methods provide the already mentioned
complementary report table that can be dynamically
sorted according to convenience. The table headers
include: GO ID, Term Name, Namespace, Absolute Fold
Change, Fold Change, HypeGeo P, Study Set, Population,
Identified in Study Set, Identified in Population, Proteins
IPI's and Folds, GO depth, and Description. GO ID and
Term Name specifies the unique GO identifier and its
name as given in the GO. Namespace points to which GO
namespace the selected term belongs to (molecular func-
tion, cellular component, or biological process). Absolute
Fold Change is the sum of the absolute values of the fold
changes of all proteins mapped onto a given GO term.
Similarly, Fold Change is the sum all their fold change val-
ues. Current gene ontology tools usually do not report
fold change information. HypeGeo P is an abbreviation
for the term's over-representation p-value. Study Set refers
to all the terms that descend from a given term. Popula-
tion stands for all the terms contained within the specified
term's namespace. Identified Proteins indicates how
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many of the proteins discriminated in the ACFoldReport
were mapped onto the specified term. Proteins IPI's and
Folds discriminates all the proteins, and respective fold
changes, mapped onto the selected term. Finally, Descrip-
tion refers to the term's GO description.

Results and discussion
We refer the reader to Figure 3 for an illustration of the
main steps that led to the results we now present.

Protein identification by the multi-surfactant shotgun 
proteomic approach
Protein solubility varies in different buffers and in the
presence of different types of detergents. Therefore, pro-

The GOEx graphical user interfaceFigure 2
The GOEx graphical user interface. A) A pie chart showing the distribution of the identified proteins as mapped onto 
selected cellular component GO terms is displayed on the right. The level of specificity was chosen according to the iDAG in 
the left panel. B) The GO terms related to the iDAG terms specified on the left are plotted according to the overrepresenta-
tion p-value and absolute fold change calculated for them from the identified proteins. The mouse is currently hovering over 
one term and its GO description is provided in a balloon. A detailed report table can be accessed by clicking on the Graph 
Data tab. C) Detailed information on the displayed results can be accessed by clicking on the Graph data tab. The table can be 
dynamically sorted by clicking on the column of interest. A detailed description of each column is addressed in The GOEx 
report table section. D) The automatic search pop-up window appears when one clicks on the Search all button in the main 
interface. The user can then select several stringency values to search for statistically overrepresented terms.
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tein solubilization by different MS-compatible detergents
can provide complementary data [22]. In this way, our
multi-surfactant proteomic approach can potentially
cover a larger portion of the proteome than the traditional
technical replicate approach, and improve the GO analy-
sis [22]. Our proteomic methodology identified a total of
2687 proteins during all six MudPIT runs and PatternLab's
ACFold selected 104 of them as differentially expressed.
An additional 23 proteins that did not satisfy our fold cut-
off but had a very low AC test p-value (the ACFold orange
group) were independently evaluated and included in our
list.

As far as we know, our A172-POH dataset is the largest
one concerning GBM A172 cells. Such repository, together
with the DTASelect files and the reported differentially
expressed proteins, is available for download at the Pat-
ternLab for Proteomics project website and can be a valu-
able source to test future GO approaches. Taken together,
the proteins identified in the present study can also pro-
vide important fundamental information about the cellu-
lar response to POH treatment.

The GOEx specialist mode results
The "Ras protein signal transduction" term was linked to
two proteins: transforming protein RhoA (IPI00478231)
and Rho-related GTP-binding protein RhoB
(IPI00000041). RhoA is involved in regulating the signal
transduction pathway between the plasma membrane
receptors for the assembly of focal adhesions and actin
stress fibers. Yan and collaborators have reported RhoA's
expression to positively correlate with the degree of malig-
nancy in astrocytomas and that its expression is increased
in various neoplasias. The authors also suggest important
implications of RhoA in both the clinical prognosis and
the biology of these neoplasms, and even suggest using it
as a prognostic biomarker [32]. Our results showed a
down-regulation of ~3× for RhoA after the POH treat-
ment, showing POH to be effective as a chemotherapeutic
agent.

RhoB was also down-regulated (~4×) after the POH treat-
ment. RhoB is linked with endothelial cell survival during
angiogenesis and has been hypothesized to have a role in
TNFalpha-induced angiogenesis through the regulation of
Akt activation, being therefore important for tissue repair
during acute inflammatory responses [33]. Thus, the fact
that POH is an angiogenesis inhibitor is in agreement
with our results [34]. Moreover, the authors also report
that inhibiting the farnesylation of RhoB is a strategy for
treatment. Indeed, one of the key effects of POH is to
inhibit the farnesylation of Ras proteins, preventing them
from docking in the plasma membrane and initiating sig-
nal transduction [21].

WorkflowFigure 3
Workflow. Key steps in the workflow, ranging from the 
mass spectral acquisition to the final GOEx analysis.
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The GOEx automatic search result
The GOEx automatic mode can provide complementary
results to the specialist when compared to the iDAG-
driven mode, as exemplified in the Implementation sec-
tion. We performed an automatic search on our dataset
using an FDR of 0.05 and eliminating terms that had each
only one protein assigned to it. The results pointed mostly
to terms related to cell cycle, alcohol catabolism, the Ras
pathway, apoptosis, and stress response. Examples of
terms belonging to the molecular function namespace
and selected as overrepresented include, but are not lim-
ited to: purine nucleotide binding, hydrolase activity–act-
ing on acid anhydrides–in phosphorus-containing
anhydrides, structural molecule activity, and cytoskeletal
protein binding. Similarly, terms belonging to the cellular
component namespace include, but are not limited to:
membrane-bound vesicle, actin filament bundle,
cytoskeletal part, and cytosolic part. Finally, terms from
the biological process namespace include, but are not lim-
ited to: microtubule-based process, actin filament-based
process, regulation of apoptosis, alcohol metabolic proc-
ess, and GTP metabolic process. Indeed, apoptosis,
changes in morphology, and most of the terms listed were
only expected, according to previous work [16,20,21];
microscopy images of the cells can be found in Figure 4.

The GOEx methodology
There are several methods to compute an over-representa-
tion p-value; examples are: the hypergeometric [35], bino-
mial, χ2 (chi-square), and Fisher's exact [36] tests; their
differences have been reported not to be dramatic for the
GO overrepresentation problem [37]. Most GO-based
tools are limited to what is equivalent to the GOEx auto-
matic search in terms of limiting the search to finding sta-
tistically over-represented terms. To speed up their
analyses, they usually do not offer over-representation cal-

culation using the hypergeometric distribution and/or use
GO-slim, a reduced version of GO. However, analyses
according to the latter are restricted to the higher GO lev-
els, which contrast sharply with our approach, which
takes into account all levels and every term. This limita-
tion could lead to missing differences that are detectable
only at more refined levels. With the advent of faster
microprocessors, the time to complete a full GO search
has dramatically decreased, so what was once considered
an issue to worry about has been downshifted. Neverthe-
less, GOEx also takes advantage of the new multi-core
chips to perform concurrent computing to accelerate the
automatic search.

Even though variations on how to find over-represented
terms can be proposed, there is no reference standard on
how to properly measure the gains. So comparisons
between methods are bound, to some extent, to be dis-
puted [38]. GOEx stands out among other methods
because it lies within a complete workflow to analyze
shotgun proteomic experiments that rely on spectral
counting. Most importantly, its reports combine informa-
tion from fold changes with statistics. As we exemplified,
these two types of information are complementary, yet
most existing GO tools do not take this fact into account.
In any given biological phenomenon, different genes are
regulated to different extents. The data providing informa-
tion about differential protein expression can be useful in
assigning different weights to the corresponding biologi-
cal processes involved and aid in inferring which biologi-
cal process is more relevant [37]. Certainly, the greatest
limitation of GOEx, and of all existing GO-based tools as
well, is that GO, the IPI database, and the mappings, all of
which serve as foundations for such tools, are not com-
plete, which evidently affects the results they yield. Such

Microscopy images of the A172 cellsFigure 4
Microscopy images of the A172 cells. These microscopy images (200×) show the A172 cell line before (A) and after treat-
ment with POH during 1.5 h. The cellular morphology changes and the cells become rounder after the POH treatment.
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limitation is inevitable but tends to become less impor-
tant as these databases are expanded.

In all, GOEx provides several strategies to explore how the
proteins of interest are distributed among GO terms. Dif-
ferently than the automatically driven methods of previ-
ous software, GOEx embodies flexible exploratory tools.
For example, as terms are expanded in the iDAG, child
terms onto which any identified protein is mapped are
kept even if not statistically enriched. This retains terms
that could contain a single protein and yet be crucial for
drawing conclusions. Thus, GOEx's iDAG or specialist
mode can determine both whether GO categories are sta-
tistically over-represented and whether there are signifi-
cant changes for individual proteins.

It seems to be a consensus that web-based tools are more
liable because the researcher can be assured to be using
the software's latest version: maintaining a stand-alone
installation represents one more chore to the user. How-
ever, the GOEx installation has been designed to be
straightforward; in fact, it can be done with one single
click of the mouse. If the application needs upgrades or
detects any missing components, they are automatically
downloaded. Nevertheless, if a major change has been
deployed but the user is unsatisfied, a rollback (restore)
can be done in one single step, differently than the web-
based case, in which one is forced to use the available ver-
sion. In this way, GOEx provides benefits in a locally
installed distribution, besides not forcing the user to share
sensitive data with an unknown and remote server. In
conclusion, GOEx facilitates organism-specific searches
using GO through a rich graphical user interface. It is a
useful, friendly, and simple to use tool, specialized for
biologists who wish to analyze spectral counting data
from shotgun proteomics.

Availability and requirements
GOEx is available for download at http://pcarvalho.com/
patternlab and is free for academic use. It was pro-
grammed in C# and requires .NET 3.5 framework (can be
automatically installed) and a windows (VISTA or XP)
personal computer.
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