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Abstract
In this study a proteomic approach was used to investigate the steady-state response of Escherichia
coli to temperature up-shifts in a cascade of two continuously operated bioreactors. The first
reactor served as cell source with optimal settings for microbial growth, while in the second
chemostat the cells were exposed to elevated temperatures. By using this reactor configuration,
which has not been reported to be used for the study of bacterial stress responses so far, it is
possible to study temperature stress under well-defined, steady-state conditions. Specifically the
effect on the cellular adaption to temperature stress using two-dimensional gel electrophoresis was
examined and compared at the cultivation temperatures of 37°C and 47.5°C. As expected, the
steady-state study with the double bioreactor configuration delivered a different protein spectrum
compared to that obtained with standard batch experiments in shaking flasks and bioreactors.
Setting a high cut-out spot-to-spot size ratio of 5, proteins involved in defence against oxygen
stress, functional cell envelope proteins, chaperones and proteins involved in protein biosynthesis,
the energy metabolism and the amino acid biosynthesis were found to be differently expressed at
high cultivation temperatures. The results demonstrate the complexity of the stress response in a
steady-state culture not reported elsewhere to date.

Background
Microorganisms live in a permanently changing environ-
ment being the temperature variation one of the most
important existing stress factors. For instance, a tempera-
ture increase induce the bacterial heat shock response
which allows cells to adapt and survive thermal stress con-
ditions [1-4]. Nowadays the heat shock response is of
importance for many scientific and industrial applica-
tions, e.g. in processes where temperature-induced heter-
ologous protein production takes place [5].

The general heat shock response was first discovered in
Drosophila sp. by Rotissa, who suggested that cells exposed
to heat induce the synthesis of a well-defined number of

proteins [6-8]. The heat shock response in E. coli was dis-
covered by the Neidhardt and Yura groups. They used
one-dimensional or two-dimensional gels to detect tem-
perature-induced proteins using batch experiments in
shaking flasks [9,10]. After a temperature up-shift the E.
coli heat shock response induced the synthesis of more
than 20 heat shock proteins which protected the cell
against thermal damage [1,3]. Typical heat shock proteins
are chaperones and proteases which promote protein
folding, refolding, quality control and protein degrada-
tion [11,12] Furthermore, it was demonstrated that most
of the heat shock genes of E. coli are under the control of
the alternative sigma factor σ32 (σH)[13]. Another alterna-
tive sigma factor involved in the heat shock response is σ24
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(σE), which was found to be an essential gene in E. coli at
all investigated temperatures [14]. In addition, many of
the heat shock proteins were required during normal cell
growth [10,15-17].

E. coli is able to grow over a range of approximately 40°C.
The normal temperature growth range is located from
21°C to 37°C. The maximum temperature at which bal-
anced growth can occur is approximately 49°C. The
growth rate of several strains of E. coli, including K-12
strains, is markedly influenced in the high temperature
range (40-45°C) by the availability of exogenous methio-
nine [18]. In the absence of methionine, growth stops at
45°C. Between 40°C and 45°C, the growth rate is limited
by the absence of methionine. At these temperatures the
activity of the first enzyme of the methionine biosynthetic
pathway, the homoserine transsuccinylase, is inhibited
[19]. For these reasons, the control of the methionine syn-
thesis regulates many aspects of growth, since it appears to
be the most temperature-sensitive synthesis pathway in E.
coli [18].

Even though the heat shock response has been pro-
foundly investigated in E. coli (reviewed in [20]), surpris-
ingly most of the research done so far has been reported
on the basis of the heat shock response carried out in
batch experiments in shaking flasks or bioreactors. The
choice of batch experiments presents several disadvan-
tages, since it leads to different transient nutrient and oxy-
gen availability conditions during cultivation. Moreover,
in shaking flask cultivations the pH is usually uncon-
trolled. Contrastingly, the growth conditions at steady-
state are well-defined and constant with the additional
advantage to adjust the growth rate, via the dilution rate
control, allowing the study of stress susceptibility and
growth separately. Only few reports are known using a
continuous cultivation approach. Hasan and Shimizu
[21] investigated the temperature up-shift effect on fer-
mentation and metabolic characteristics considering the
gene expression in E. coli. They used batch and continuous
cultivations to study the heat shock response in a time
dependent manner.

In this work we used the proteomic approach to study the
steady-state response of E. coli to a temperature up-shift in
a cascade of two continuously operated bioreactors. The
first reactor served as cell source with optimal settings for
E. coli growth at a cultivation temperature of 37°C and a
constant dilution rate of 0.225 h-1. In the second chemo-
stat the cells were exposed to an elevated temperature
(47.5°C) decoupling the heat shock response from any
other transient process parameter and therefore enabling
the proteome investigation under constant and reproduc-
ible conditions.

Both culture systems are considered in this study as per-
fectly mixed, ideal continuous-flow stirred-tank bioreac-
tors and their operation can be well characterized by the
dilution rate D, defined by:

where F is the volumetric flow rate of feed and effluent liq-
uid streams and VR the total volume of culture within the
respective bioreactor. However, while in the growth biore-
actor (System 1) a straightforward interpretation of the
dilution rate in term of the kinetics of balanced growth
can be given, i. e. the specific growth rate equals the dilu-
tion rate [22], the operation in the stress bioreactor (Sys-
tem 2) and the consequent heat shock response must be
interpreted differently.

The dilution rate per se is equal to the number of tank liq-
uid volumes which pass through the bioreactor per unit
time. This is also the reciprocal of the mean holding time
or mean residence time, τ:

τ can be interpreted as the expected or average time that
any species (reactants, microorganisms, fluid elements,
etc.) will spend in the bioreactor during continuous oper-
ation [22-24]. For this reason, any experiments in the
stress reactor can be better explained in terms of the mean
residence time. In the case of our stress bioreactor and
considering an integral residence time distribution of the
form [23]:

this would mean that more than 99% of the cells present
in the vessel are exposed to a temperature of 47.5°C for a
period of time equal to the mean residence time after
reaching stationary conditions (t ≥ 5 τ). Since the heat
shock response is not only a function of the stress inten-
sity but also a function of the duration of stress, our two
bioreactors platform offers a possibility to investigate
stress intensity and duration independently from each
other varying temperature level and dilution rate (mean
residence time) respectively.

In our study a dilution rate of 0.2475 h-1 was used. This
corresponds to a mean residence time of 4.04 h, i. e. the
cells were incubated in average for more than 4 h at the
higher cultivation temperature in the stress bioreactor. In
contrast to previous studies it was shown that the synthe-
sis of the heat shock proteins accelerates in the first sec-
onds after the temperature increase, lasted no more than
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20 min and reached a steady-state level [25,26]. On the
basis of this fact the proteomic analysis of the E. coli heat
shock response under steady-state conditions were ana-
lysed and any inhomogeneities can be neglected since
only a marginal amount of the E. coli cells have lower or
bigger exposure times at this heat shock condition.

Results and Discussion
Biochemical analysis of the steady-state cultivations
Considering an ideal well-stirred bioreactor under steady-
state conditions any biochemical and physiological
parameter of the performed experiments was considered
to remain constant for all cultivations. Glucose was
present at a limiting concentration in the stress bioreactor
at the cultivation temperature of 47.5°C (Table 1). At
47.5°C no growth could be detected and the glucose was
completely depleted, however, at 47.5°C high amounts of
acetate (15.9 g L-1) were synthesized. The assimilated glu-
cose was most probably used for the maintenance metab-
olism to adapt and survive the stress conditions. Growing
on glucose as carbon source, E. coli produces and excretes
acetate which may serve as well as an additional carbon
source. This phenomenon is known as overflow metabo-
lism or 'bacterial Crabtree effect' [27-33].E. coli produces
acetate at glucose concentrations above about 30 mg/l
[33] which inhibits the growth even under neutral pH
[34]. The protonated form of acetate crosses the cell mem-
brane [35,36] and deprotonates in the cytoplasm decreas-
ing the intracellular pH [36,37]. In addition to acetate the
other detected by-product, formate, was observed in
increased concentration with increasing cultivation tem-
perature. At 37°C, 0.43 g/l formate was measured in the
growth bioreactor while at 47.5°C, 2.35 g/l was measured
in the stress bioreactor.

Proteomic analysis of the steady-state heat shock response
The proteome analysis was carried out using three differ-
ent extraction methods for the protein preparation in
addition to the normal cytoplasmic protein preparation
to enrich hydrophobic membrane proteins and extend the
protein spectrum of the steady-state heat shock response.
The first method uses triton-X-114 to extract membrane
proteins. Substances such as triton are molecular hybrids
which are composed of a hydrophilic and a hydrophobic
part. This enables the hydrophobic membrane proteins to
be dissolved in water. In the second method the cell mem-
branes were treated with sodium carbonate at pH 11.5.

This treatment gives a negative charge to the proteins and
the cell membrane. The charge affects directly those pro-
teins that are not closely attached to the cell membrane
and repel from this, which are also negatively charged,
and can be dissolved for further analysis. The third
method uses a rehydration buffer containing thiourea,
urea, CHAPS, DTT, Triton and ASB-14 to dissolve mem-
brane proteins and membrane attached proteins. All
results obtained in the study are summarized in Table 2
and will be discussed in the following.

Enzymes involved in oxidative stress
In this study three enzymes involved in defence against
oxidative stress, the manganese-containing superoxide
dismutase SodA, the alkyl hydroperoxide reductase AhpC
and the DNA starvation/stationary phase protection pro-
tein Dps were highly up-regulated with increasing temper-
atures from 37°C to 47.5°C. SodA showed a 17.7-fold,
AhpC a 17.7-fold, and Dps a 7.3-fold up-regulation in the
stress bioreactor at a cultivation temperature of 47.5°C
compared to their level in the growth bioreactor.

Under aerobic growth, reactive and toxic oxidative species
are formed and can damage cell constituents like lipids,
proteins and certain prosthetic groups of some enzymes
and DNA [38-42]. Oxygen radicals such as O2

- and H2O2
evolve from the reduction of oxygen molecules. O2

- can be
converted to H2O2 either spontaneously or by the super-
oxide dismutase (Sod). The formation of O2

-, and conse-
quently of H2O2 increased at elevated temperatures in the
stress bioreactor and boosted the induction of SOD as an
adaptive response to heat stress. H2O2 can be further
decomposed by catalases or AhpC to yield H2O. Ahp,
which is, is likely to be the primary scavenger of endog-
enous H2O2, i. e. the negative effect of the generated H2O2
can be averted by the scavenging activity of Ahp [43]. An
overview of the oxidative species and their evolution is
present in Figure 1.

Moreover, the Dps protein was 7.3-fold up-regulated in
the cells cultivated in the stress bioreactor at 47.5°C. Dps
protects genomic DNA against oxidative stress [44], nucle-
ase cleavage, UV light and thermal stress, possibly by its
DNA-binding ability to block the stress elements that
attack DNA [45]. The genomic DNA is transformed by
Dps among other proteins to a form of "nucleoid" to pro-
tect the genomic DNA against environmental stresses [46-
49]. The results of our study indicate the existence of oxi-
dative stress in the second bioreactor and the cell response
to this stress is the simultaneous increase in the synthesis
of AhpC and SodA in steady-state conditions.

Proteins of the cell envelope
The bacterial cell envelope serves as semi-permeable bar-
rier between the cytoplasm of the microorganisms and the
environmental medium performing a number of impor-

Table 1: Glucose, acetate and formate concentration in the 
growth bioreactor at 37°C and the stress bioreactor at 47.5°C.

Metabolite Growth bioreactor
37°C

Stress bioreactor
47.5°C

glucose 0.019 ± 0.013 0.025 ± 0.035
acetate 0.098 ± 0.098 15.870 ± 0.025
formate 0.428 ± 0.236 2.354 ± 1.200
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Table 2: Proteins identified which show a 5-fold up- or down-regulation under temperature stress at 47.5°C in the stress bioreactor 
compared to the reference system, the growth reactor at 37°C.

normalized spot intensity

protein group description function accession number growth bioreactor stress bioreactor

enzymes involved in oxidative stress 37°C 47.5°C

Dps DNA-binding protein protection of DNA NP_415333.1 1 ± 0.024 7.32 ± 0.479
AhpC reductase subunit C formation of H2O from 

H2O2

NP_415138.1 1 ± 0.068 17.74 ± 1.203

SodA superoxide dismutase convertion of O2- to H2O2 NP_418344.3 1 ± 0.006 17.74 ± 0.11
proteins of the cell envelope

FnlC l-fucosamine synthetase O antigen biosynthesis Q5ISY2 20.5 ± 4.24 1 ± 0.707
OmpA outer membrane protein A membrane transport NP_415477.1 42 ± 0.004 2 ± 0.606
OmpF outer membrane protein F membrane transport NP_415449.1 1 ± 0.188 31.47 ± 1.425
OmpF outer membrane protein C+F membrane transport NP_415449.1 1 ± 0.078 28.47 ± 2.21
Ag43 antigen 43 autoaggregation AP_002599.1 1 ± 0.324 7.57 ± 10.212
chaperones and proteins involved in protein biosynthesis

Skp chaperone protein periplasmic chaperone NP_414720.1 1 ± 0.707 33.92 ± 0.354
OppA oligopeptide-binding protein chaperone NP_415759.1 8.77 ± 0.362 1 ± 0.099
Hsp40 chaperone protein cytoplasmic chaperone NP_414556.1 1 ± 0.098 5.45 ± 0.536
LeuRS leucyl-tRNA synthetase linking the amino acid to 

its tRNA
NP_415175.1 1 ± 0.046 4.67 ± 0.213

RP S2 ribosomal protein S2 translation NP_414711.1 16.51 ± 3.29 1 ± 0.164
RP S4 ribosomal protein S4 translation NP_417755.1 1 ± 0.561 7.4 ± 1.212
Rp L5 ribosomal protein L5 translation NP_417767.1 1 ± 0.326 5.45 ± 0.427
Rp S11 ribosomal protein S11 translation NP_417756.1 1 ± 0.09 6.53 ± 1.65
enzymes involved in the glycolysis, TCA cycle and mixed acid fermentation

TpiA triosephosphate isomerase glycolysis NP_418354.1 1 ± 0.062 6.4 ± 0.4
GpmA 2,3-bisphosphoglycerate-

dependent phosphoglycerate 
mutase

glycolysis NP_415276.1 1 ± 0.068 16 ± 1.09

GltA citrate synthase TCA cycle NP_415248.1 1 ± 0.036 7.88 ± 0.28
AcnB malate synthase TCA/glyoxylate cycle NP_414660.1 1 ± 0.25 0
AceB aconitase B glyoxylate cycle NP_418438.1 1 ± 0.311 5.55 ± 1.73
Pta acetyl-CoA:Pi 

acetyltransferase
acetate formation and 
dissimilation

NP_416800.1 1 ± 0.25 0

AtpG F0F1 ATP synthase subunit 
gamma

ATP synthesis NP_418189.1 1 ± 0.413 7.05 ± 0.48

enzymes involved in amino acid biosynthesis

MetE triglutamate-homoserine 
methyltransferase

methionine biosynthesis NP_418273.1 1.04 ± 0.199 9.74 ± 0.282

FolE GTP cyclohydrolase I tetrahydrofolate 
biosynthesis

NP_416658.1 20.33 ± 0.471 3.33 ± 0.943

CysP thiosulfate transporter uptake of sulphate and 
thiosulfate

NP_4168920.1 1 ± 0.188 4.17 ± 2.71

MetN DL-methionine transporter 
subunit N

methionine transporter NP_414741.1 1 ± 0.076 15.86 ± 1.21

GlyA serine hydroxy-
methyltransferase

serine-glycine biosynthesis NP_417046.1 1 ± 0.149 5.56 ± 0.829

SerA phosphoglycerate 
dehydrogenase

serine-glycine biosynthesis NP_417388.1 1 ± 0.025 25.5 ± 0.647

PepA leucyl aminopeptidase aminopeptidase NP_418681.1 1 ± 0.295 5.42 ± 0.943
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tant functions. The cell membrane is involved in many
growth and metabolic processes, e.g. location of the respi-
ratory chain and the synthesis of the cell wall; it forms an
osmotic gate, controls the entrance and the exit of sub-
stances and transmits the environmental signals. The cell
wall is responsible for the cell shape and the outer mem-
brane of E. coli constitutes the outermost area of the cell,
which contains surface carbohydrate structures that are
important virulence factors.

Five proteins of the cell envelope were found to be highly
up or down-regulated. The L-fucosamine synthetase
(FnlC) and the outer membrane protein A (OmpA)
showed a down-regulation at high cultivation tempera-
tures. In contrast, the outer membrane proteins F (OmpF)
and C (OmpC), identified in one single spot, and the anti-
gen 43 (Ag43) were up-regulated at a cultivation temper-
ature of 47.5°C in the stress reactor under steady-state
conditions. Ag43 is also located in the outer membrane of
E. coli. The function of Ag43 has remained unknown until
now. Previous studies indicated that the Ag43 protein
mediates the autoaggregation of certain strains of E. coli in
a liquid culture. Danese et al. reported that the Ag43 pro-
tein contributes to the E. coli biofilm formation in glu-
cose-minimal medium, but not in complex broth [50].
Although no cell aggregation or biofilm formation as pos-
sible protective mechanisms were detectable in the stress
bioreactor, we found that this protein is 7.6-fold up-regu-
lated than under optimal growth conditions.

Contrastingly, the FnlC protein was down-regulated in the
steady-state cultures at high temperature. This belongs
next to FnlB, and FnlC to the E. coli O26 O-antigen gene
cluster catalyzing a five-step reaction cascade in the bio-

synthetic pathway of the O antigen of the lipopolysaccha-
ride layer (LPS) [51]. At 47.5°C no growth of E. coli could
be detected and since less cell divisions occur lower
amounts of cell constituents like the LPS, and conse-
quently of the FnlC protein, are needed.

OmpA is associated with the peptidoglycan layer and has
an important role in stabilizing the outer membrane and
retaining the rod shape of the E. coli cell. The porin OmpA
which was down-regulated at high temperatures is a major
component of the outer membrane of E. coli [52]. Synthe-
sis of OmpA is growth rate dependent [53], such that the
ompA mRNA half-life increases proportionally with the
growth rate [54]. The alternative sigma-factor σE fulfil a
role in response to cell envelope stress and is essential for
viability [14,55,56]. The majority of the genes which are
under the control of σE are involved in synthesis, assembly
and homeostasis of the outer membrane. The small non-
coding RNA, MicA is positively regulated by the periplas-
mic sigma factor σE in response to envelope stress [57]. A
transient expression of MicA leads to a strong reduction of
the ompA mRNA level [58]. Envelope stress due to the
accumulation of and aggregation of unfolded proteins
thus reduces OmpA levels via σE and MicA under temper-
ature stress. This periplasmic stress could cause an
extremely reduced growth and be present in the cells dur-
ing the non-growing maintenance phase.

The outer membrane proteins OmpC and OmpF
[53,59,60] were found to be 30-fold up-regulated under
steady-state heat shock conditions in the stress bioreactor
at 47.5°C. Mecsas et al. identified overexpressed outer
membrane porins (OMPs), such as OmpC and OmpF, as
inducers of the σE activity[61]. Since the export of these
OMPs to the periplasm was required for the σE induction,
the overexpression of OMPs was assumed to generate a σE

inducing signal shortly after passage through the inner
membrane, perhaps as a consequence of the accumula-
tion of unfolded periplasmic OMP species [61]. OmpF
and OmpC play an important role in membrane trans-
port: as they are water-filled, passive diffusion through
channels allows hydrophilic molecules to cross the outer
membrane [62]. In E. coli, the synthesis of the proteins
OmpC and OmpF is controlled by the osmolarity as well
as the temperature [53,62]. The wider diameter of the
OmpF porin could be made responsible for an increased
capacity of the cells for assimilation of nutrients by
increasing the permeability of the outer membrane [63].

Chaperones and proteins involved in protein biosynthesis
Under temperature stress heat shock proteins are strongly
induced to protect the cell against damage. Typical heat
shock proteins are chaperones and proteases which oper-
ate in protein folding, refolding, quality control and pro-
tein degradation [11,12,64]. Eight proteins with
chaperonic function or proteins involved in the protein

Formation of reactive oxygen species and degradationFigure 1
Formation of reactive oxygen species and degrada-
tion. The involved and identified proteins SodA and AhpC 
are up-regulated under higher cultivation temperatures in the 
stress bioreactor.
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biosynthesis showed different steady-state protein expres-
sion levels in the stress bioreactor. The chaperone protein
Skp, the chaperone Hsp40, the leucyl-tRNA synthetase
LeuRS and the ribosomal proteins S4, L5, and S11 were
up-regulated at higher temperature culture conditions.
Down-regulated protein expression levels showed the oli-
gopeptide-binding protein OppA and the ribosomal pro-
tein S2.

The periplasmic chaperone Skp which has a general chap-
erone activity [65] and is under the control of the σE and
the Cpx stress response [66]. σE is activated in response to
unfolded OMPs due to the increased temperature [61,67],
and consequently Skp is involved in the biogenesis and
the folding of OMPs.

The oligopeptide-binding protein OppA interacts with
unfolded and denatured proteins, such as the molecular
chaperones. Richarme and Clada concluded that OppA is
synthesized at similar rates before and several minutes
immediately after heat shock, but only analysed the syn-
thesis of OppA 16 minutes after heat shock[68]. In con-
trast, in our study OppA was found to be down-regulated
at 47.5°C at the stress bioreactor under steady-state con-
ditions, i.e. long lasting temperature stress at steady-state
conditions seemed to cause a different stress response
than a short term heat shock with the batch approach
reported by Richarme and Caldas [68].

The third over-expressed protein Hsp40 (DnaJ) has been
described as a molecular chaperone because of its ability
to bind non-native polypeptides and prevent protein
aggregation [69]. At high temperature of 47.5°C in the
stress bioreactor several proteins may denature and
unspecific chaperones like Hsp40 are therefore up-regu-
lated to prevent their destruction under steady-state con-
ditions.

Moreover, the leucyl-tRNA synthetase was found in higher
concentrations under steady-state temperature stress than
under optimal growth conditions. The tRNA synthetases
catalyze the initial step of protein synthesis by covalently
linking an amino acid to its cognate tRNA [70]. Under
temperature steady-state stress conditions high amounts
of heat shock proteins have to be synthesized, therefore
requiring a higher synthesis of aminoacyl-tRNA syn-
thetases.

Beside the synthetase, the expression profiles of several
ribosomal proteins were also up-regulated under steady-
state heat stress. In our study, we found the S4 and S11
protein of the ribosomal small subunit and the L5 protein
of the large ribosomal subunit up-regulated in steady-
state cultures at high temperatures. Ribosomal proteins
are also known to have extra-ribosomal function [71] car-
ried out through the interactions with RNA, DNA, or with

other proteins. Kovacs et al. studied the assistance of RNA-
and protein folding by ribosomal proteins [72]. They
showed that the ribosomal proteins L15, L16, L18 and
L19 not only presented RNA-chaperone activities, but that
they are also potent protein chaperones with activities
occasionally exceeding that of a classical protein chaper-
one, Hsp90. A possible chaperonic function of other
ribosomal proteins has not been shown until now. Con-
trastingly only the S2 ribosomal protein of the small sub-
unit was down-regulated at high temperatures in the
steady-state cultures. The reason remains unclear.

Enzymes involved in the glycolysis, TCA cycle and mixed acid 
fermentation
Seven proteins involved in glycolysis, TCA cycle and
mixed acid fermentation showed different expression lev-
els at high temperatures in the stress bioreactor of our bio-
reactor cascade application. Two enzymes of the
gylcolysis, the triosephosphate isomerase (TpiA) and the
phosphoglycerate mutase (GpmA), one enzymes of the
TCA cycle, the citrate synthase (GltA) and one enzyme of
the glyoxylate cycle, the malate synthase (AceB) and the γ
subunit of the ATP synthase were highly up-regulated at
the cultivation temperature of 47.5°C The metabolic
pathways where these different expressed proteins are
involved are illustrated in Figure 2.

In the stress bioreactor at 47.5°C the glucose was com-
pletely consumed and high amounts of acetate were
found. Acetate is synthesized by the glycolytic enzymes
and the mixed acid fermentation occurs aerobically due to
the growth of excess glucose [29,73]. This phenomenon is
known as bacterial Crabtree effect [30,31,74,75]. In its
undissociated or acidic form, this lipophilic weak acid
easily permeates membranes, uncoupling the transmem-
brane pH gradient [35,36,76,77]. Once across the mem-
brane, it dissociates into a proton and an anion [77,78].
The proton acidifies the cytoplasm, while the anion
increases the internal osmotic pressure and interferes with
methionine biosynthesis [79-81].

At 47.5°C really high amounts of acetate were measured.
It seems that the non-growing cells were not able to assim-
ilate the acetate due to the stationary phase inhibition of
the expression of the acetylCoA-synthetase which is
responsible for the uptake of acetate [82].

Aconitases catalyze the interconversion of citrate and iso-
citrate via cis-aconitate in the citric acid and glyoxylate
shunt. Veit et al. showed a negative correlation of the acnB
gene expression with acetate formation during continu-
ous cultivation [83]. In the stationary phase the gene
expression of the second aconitase AcnA increase and sub-
stitute the AcnB protein [84]. The acnA gene product
shows a higher stability and affinity for citrate.
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Metabolic pathway of the gylcoylsis, the citrate cycle and the glyoxylate cycleFigure 2
Metabolic pathway of the gylcoylsis, the citrate cycle and the glyoxylate cycle. The down or up-regulated enzymes 
are highlighted in gray.



Proteome Science 2009, 7:36 http://www.proteomesci.com/content/7/1/36
Besides the glycolytic pathway, another central metabolic
pathway of aerobic organisms, the citric acid cycle, seems
to be up-regulated at high temperatures in the stress bio-
reactor. The expression level of the citrate synthase indi-
cates a higher demand of energy for the synthesis of heat
shock proteins and intermediates in the cells cultivated
under steady-state conditions in the stress bioreactor. The
higher energy demand might also explain the 7-fold up-
regulation of the γ subunit of the ATP synthase found in
our study at a cultivation temperature of 47.5°C. The
malate synthase encoded by the aceB gene belongs to the
anaplerotic glyoxylate cycle and showed a 5.5-fold higher
expression level in our study. The glyoxylate cycle, identi-
fied by Kornberg and Beevers [85], provides a simple and
efficient strategy for converting acetyl-CoA into ana-
plerotic and gluconeogenic compounds. Studies of Korn-
berg, Krebs and Beevers identified two enzymes, isocitrate
lyase and malate synthase, which, in conjunction with
reactions of the citric acid cycle, allowed for the synthesis
of anaplerotic succinate from two molecules of acetyl-CoA
via a pathway named the glyoxylate shunt [85,86].

The acetyl-CoA acetyltransferase (Pta) could not be
detected at a higher cultivation temperature of 47.5°C in
the stress bioreactor. Temperature increases the Pta activ-
ity. Possibly, we found no higher expression of Pta
because of the higher activity of Pta at higher tempera-
tures; i. e. the regulation seemed not to have occurred on
protein expression level. The results suggest the existence
of a glucose starvation stress response in the cells of the
second bioreactor which results in the observed up-regu-
lation of TpiA and GpmA as well as an increase in the
measured acetate production and excretion to the sur-
rounding media. The balance between intracellular acetyl-
CoA and extracellular acetate probably represents the
most important influence on the intracellular acetyl-P
pool. Pruess and Wolfe also demonstrated a correlation
between incubation temperature and the intracellular
acetyl-P pool [87]. At or below 34°C, they could not
detect acetyl-P; above that temperature, the concentration
increased. These results are consistent with the observa-
tion that extracellular acetate correlates with temperature
[88] and can be readily explained by a reduced ackA tran-
scription coupled with increased Pta activity [87], which
also occurred in our experimental setup.

Enzymes involved in amino acid biosynthesis
Amino acids play a very important role as building block
of proteins. Especially at high temperatures many new
proteins have to be synthesized or degraded to adapt and
survive the stress conditions. Under heat stress several
enzymes of the amino acid biosynthesis were found to be
up-regulated in steady-state cultures. The 5-methyltetrady-
ropteroyltriglutamate-homoserine methyltransferase
(MetE), the thiosulfate transporter (CysP), the DL-
methionine transporter subunit (MetN), the DL-methio-

nine transporter subunit (GlyA), the phosphoglycerate
dehydrogenase (SerA) and the leucyl aminopeptidase
(PepA) were highly up-regulated with increasing temper-
atures. The GTP cyclohydrolase I (FolE) is the only protein
involved in amino acid biosynthesis which was down-reg-
ulated.

At high cultivation temperature many proteins denature
and are degraded by proteases. Under steady-state heat
shock conditions we found the aminopeptidase PepA 5.4-
fold up-regulated. The PepA enzyme displays strong ther-
mostability and is active mainly on large peptides and is
thus capable of degrading proteins (reviewed in [89]). In
the present case, most probably the regenerated amino
acids coming from degraded proteins served as building
blocks for the synthesis of new proteins.

In E. coli, the growth rate at elevated temperatures is con-
trolled by the availability of endogenous methionine,
which is limited because of the temperature sensitivity of
the metA gene product, the homoserine transsuccinylase,
the first enzyme of the methionine biosynthesis [79-81].

To balance the methionine limitation the cells can take,
for example, the methionine released from the already
died cells. In any case under steady-state conditions the D/
L-methionine transporter subunit (MetN) was 15.9-fold
up-regulated at 47.5°C most probably to facilitate
methionine uptake. MetN is the putative ATPase and MetI
is the membrane-spanning region of the MetD ABC trans-
porter. Kadner (1974, 1975) had shown that growth con-
ditions can cause several-fold changes in the amount and
activity of the methionine transport system of E. coli
[90,91]. Cells grown without methionine exhibited a
higher initial rate of uptake than those grown with addi-
tional methionine [90].

Besides the assimilation of methionine the alternative
methionine synthesis pathway via serine seems to the up-
regulated as well. That is the case of the MetE protein
which catalyses the final methyl transfer to homocysteine
to form methionine. This showed a 9.7-fold higher
expression level at 47.5°C than in the growth bioreactor
at 37°C. The MetE enzyme has a low catalytic turnover
and accounts a large percent of the total soluble protein in
cells grown on minimal medium (reviewed in [92]).
However, at a high cultivation temperature in the stress
bioreactor the synthesis of methionine seems to be lim-
ited although the metE gene expression is not repressed.

Additionally, two enzymes of the serine/glycine synthesis
pathway were highly up-regulated at 47.5°C in the stress
bioreactor. The 3-Phosphoglycerate dehydrogenase (serA
gene product) showed a 25.5-fold higher expression level
at 47.5°C in cells of the stress bioreactor compared to
those cultivated in the growth bioreactor. Moreover the
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glyA gene that encodes for the serine hydroxymethyltrans-
ferase was 5.6-fold up-regulated as well. These two
enzymes are involved in the serine-glycine pathway which
is important for the availability of serine and glycine to
synthesize proteins under heat shock conditions. Serine is
used in the synthesis of cysteine, tryptophan, and phos-
pholipids and can also be converted to glycine and a C1
unit by serine hydroxymethyltransferase [93,94]. Glycine
is a precursor of purines and heme-containing com-
pounds [95-97]. C1 units are used in the synthesis of
purines, histidine, thymine, methionine, the formylation
of the aminoacylated initiator tRNA, and S-adenosylme-
thionine (SAM) [95]. SerA and GlyA are both also
involved in methionine biosynthesis to balance the
endogenous methionine limitation.

The CysP protein is part of the periplasmic transport sys-
tem for the uptake of sulphate and thiosulfate released
from cells undergoing lysis. At 47.5°C the CysP protein
showed a 4.2-fold up-regulation. Cysteine and methio-
nine are essential building blocks of proteins and must be

along with the sulfur-containing cofactors thiamine,
lipoic acid, biotin, molybdopterin, glutathione, coen-
zyme A and coenzyme M, synthesized by the cell or
recruited from the environment as inorganic or organic
form [98]. The uptake systems and pathways where these
different expressed proteins are involved are illustrated in
Figure 3.

In contrast the FolE protein, the GTP-Cyclohydrolase I,
showed a heat-induced decrease. At 37°C in the growth
bioreactor 20.3-fold higher amounts of FolE could be
detected with respect to the stress bioreactor at 47.5°C.
FolE is the first enzyme of the de novo tetrahydrofolate
biosynthetic pathway in E. coli. Folic acid, in the form of
various tetrahydrofolate (THF) derivatives, serve as cofac-
tor in one-carbon transfer reactions during the synthesis
of purines, thymidylate, pantothenate, glycine, serine,
and methionine [99]. Lee et al. found the highest specific
activity of the GTP-Cyclohydrolase I of E. coli at 60°C
[100]. In our study the GTP-Cyclohydrolase I is probably
up-regulated at lower temperatures in the growth bioreac-

Metabolic pathway of the amino acids methionine, serine, cysteine and glycine and the uptake of extracellular methionine and sulfateFigure 3
Metabolic pathway of the amino acids methionine, serine, cysteine and glycine and the uptake of extracellular 
methionine and sulfate.
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tor and down-regulated i.e. most probably partially
degraded in the stress bioreactor because of its higher spe-
cific activity with increasing cultivation temperatures.

Conclusion
In the present work a cascade of two continuously oper-
ated bioreactors was used to study the steady-state heat
shock response of E. coli to temperature up-shift. The tem-
perature stress response was investigated by means of 2-D
gel electrophoresis. The bioreactor system configuration
allowed the analysis of the stress response under well-
defined conditions in steady-state cultures, which deliv-
ered a different protein spectrum compared to standard
batch cultures in shaking flasks and bioreactors. Setting a
high cut-out spot-to-spot size ratio of 5, proteins involved
in defence against oxidative stress, cell envelope proteins,
chaperones and proteins involved in protein biosynthesis,
the energy metabolism and the amino acid biosynthesis
were found to be differently expressed at the high cultiva-
tion temperature.

Due to the higher cultivation temperature the synthesis of
oxygen radicals increased and the cells protected their cel-
lular components up-regulating SodA, AhpC and Dps at a
cultivation temperature of 47.5°C in the stress bioreactor.
Especially the existence of oxidative stress may have a
great influence in the new design or further optimization
of heterologous protein production processes using tem-
perature-induced systems. Concretely, after induction of
the protein expression through a temperature shift, both
the agitation and the aeration rate should be reduced to
minimize the oxidative stress; this action might have the
additional advantage of a possible redirection of the pro-
tein synthesis resources to the desired product. Contrast-
ingly to batch experiments Privalle et al. only showed that
induction of SodA in E. coli was caused by the exposure to
48°C in shaking flask [101]. Moreover, Benov and Fridov-
ich [102] investigated the oxidative stress under heat
shock in batch experiments too and showed the essential-
ity of SodA: the exposure of a superoxide dismutase-null
strain of E. coli to 45°C to 48°C led to a profound loss of
viability [102].

The higher expression of outer membrane proteins and
the up-regulation of the glycolysis, the TCA cycle and the
γ subunit of the ATP synthase indicated a higher energy
demand at a cultivation temperature of 47.5°C compared
to the reference cultivation at 37°C. In contrast to our
results, in batch cultivations, non-growing cells enter the
stationary phase followed by a down-regulation of
enzymes of the central metabolic pathways.

At high temperatures the growth rate is markedly influ-
enced by the availability of exogenous methionine [18].
In the absence of methionine, growth stops at 45°C. To

compensate the methionine requirement in steady-state
cultures the PepA extracelullar aminopeptidase, the GlyA
and the SerA proteins which are part of the serine-g lycine
pathway, as well as the methionine transporter subunit
MetN and the methionine synthetase MetE were up-regu-
lated at high cultivation temperatures in the stress biore-
actor. CysP is also up-regulated and is responsible for the
uptake of sulphate and thiosulfate which are needed for
the synthesis of the essential building blocks methionine
and cysteine. These results agree with batch experiments
reported elsewhere. An amino acid limitation via the
ppGpp mediated stringent response caused an up-regula-
tion of the amino acid biosynthesis and a down-regula-
tion of transcription and translation [103]. In our study,
the amino acid biosynthesis seems to be up-regulated too.
However, in the continuously operated bioreactor cascade
we found an up-regulation of ribosomal proteins and the
leucyl-tRNA-synthetase.

In our experiments glucose was present in limiting con-
centrations causing an up-regulation of proteins for the
uptake of alternative C-sources. At 47.5°C nearly no
growth could be detected although almost all glucose was
consumed and high amounts of acetate were measured.
The existence of starvation stress proteins may be better
interpreted as an E. coli glucose insufficiency signal in our
system. The assimilated glucose was most probably used
for maintenance metabolism to adapt the stress condi-
tions and to synthesize all the proteins and intermediates
needed for protection and survival. Particularly consider-
ing the excess of an alternative C-source, acetate, the high
energy demand can be most probably attributed to the
synthesis of heat shock proteins, ribosomal proteins and
aminoacyl-tRNA synthetases. Under these conditions the
gyloxylate cycle was up-regulated at high cultivation tem-
peratures. At 47.5°C the non-growing cells were in an sta-
tionary phase like stadium and were not able to assimilate
the acetate due to an inhibition of the expression of the
acetylCoA-synthetase which is responsible for the uptake
of acetate [82].

The analysis of the stationary E. coli heat shock response
showed the existence of different stress factors in a contin-
uously operated system. Identical to batch experiments we
found a protease, several chaperones, proteins of the
amino acid biosynthesis and the oxidative stress response
highly up-regulated in the stress bioreactor at 47.5°C.
Interestingly, proteins of the central metabolic pathways
and the protein biosynthesis were up-regulated in the con-
tinuously bioreactor system compared to batch experi-
ments reported elsewhere. Since the heat shock response
is not only a function of the stress intensity but also a
function of the duration of stress, our two bioreactors
platform offers a remarkable possibility to investigate
stress intensity and duration, independently from each
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other, varying temperature level and dilution rate (mean
residence time) respectively.

Methods
Bacterial strain and media
The Escherichia coli strain MG1655, a wild-type K12 strain,
was used in this study. For the cultivations the defined
minimal media M1, containing the following compo-
nents, were utilized: 1.25 mM NH4Cl, 5.05 mM
(NH4)2SO4, 7.96 mM KH2PO4, 4.78 mM K2HPO4, 30.6
mM NaH2PO4, 55.5 mM C6H12O6•H2O, 0.068 mM
CaCl•2H2O, 0.00174 mM ZnSO4•7H2O, 0.00148 mM
CuCl2, 0.0148 mM MnSO4•H2O, 0.0074 mM CoCl2,
0.002 mM H3BO3, 0.0104 mM AlCl3•6H2O, 0.002 mM
Na2MoO4•2H2O, 0.036 mM FeSO4•7H2O, 4.16 mM
MgSO4•7H2O.

Growth conditions
E. coli was cultivated in a cascade of two continuous
stirred tank reactors connected in series (Figure 4). Two 3
L-Applikon bioreactors (Applikon, AC Schiedam, The
Netherlands) with a working volume of 2 L were used. The
Applikon-bioreactors were run and controlled by an ADI
1010 Bio Controller, an ADI 1025 Bio Console and an
ADI 1032 Stirrer Controller (Applikon). The cultivation
parameters pH, dissolved oxygen, temperature and agita-
tion were monitored using the software BioXpert,
v.2.70.115 (Applikon). The exhaust gas analysis was per-
formed with the BCP-O2 and BCP-CO2 gas sensors (Blue-
Sens, Herten, Germany) and the associated software
FermVis (BlueSens).

Prior to the start of a continuous cultivation the growth-
bioreactor was inoculated directly from a glycerol stock of
E. coli MG1655 and cultivated in batch at 37°C, 1000
rpm, pH 7.0 and aeration of 3 L min-1 air. Biomass con-
centrations were estimated measuring the optical density
of the culture broth at 660 nm (OD660) with the UV-Vis
spectrophotometer Helios α (Thermo Fisher Scientific
Inc. Waltham MA, USA). After reaching an OD660 of
approximately 0.5 the continuous cultivation was started.
Figure 8 shows the experimental set-up of the bioreactor
cascade. In the cascade of continuously operated bioreac-
tors, the dilution rate D1 of the growth reactor was kept
constant at 0.225 h-1 adjusting the fresh media stream F0.
The dilution rate D2 of the stress reactor was also kept con-
stant, but it amounted 1.1 D1 due to the use of a second
fresh substrate feed F02, together with the reactor stream
F1. The second feed F02 containing 10-fold concentrated
media served as nutrients source for the cells growing in
the second bioreactor to avoid any substrate limitation. In
the first reactor the cultivation temperature was set to
37°C, while in the second bioreactor, acting as stress unit,
the temperature was set to a higher temperature of
47.5°C. The pH was controlled in both reactors using
6.25% NH3 and 9.25% HCL. Dissolved oxygen concentra-
tion was kept above 20% and antifoam agent was added
every 6 h for 1 min using a timer. Biomass was monitored
using the measured OD660 of the samples taken at regular
time intervals. Concentration of glucose was quantified
using the glucose analyzer 2300 STAT Plus (Ysi, Yellow
Springs, Ohio, USA). Secreted metabolites were deter-
mined using HPLC analysis. A D-7000 system by Merck-
Hitachi was used with a RI-detecor (L-7490). For detec-
tion of small carboxylic acids an ion-exchange-column
Polysphere OA HY (Merck, Darmstadt, Germany) was
chosen with 5 mM H2SO4 as the mobile phase. The estab-
lishment of steady-states in both reactors was monitored
via exhaust gas analysis. Constant oxygen uptake and car-
bon dioxide production rates after five residence times in
the respective reactor confirmed the steady-state condi-
tions.

For 2-D gel analysis cell samples were taken during steady-
state conditions and were immediately cooled down at
4°C in five times the sampling volume of phosphate-buff-
ered saline (PBS) solution. To stop the protein biosynthe-
sis 1 mg mL-1 Chloramphenicol was added. Finally the
cells were separated by centrifugation at 6.500 g for 15
min at 4°C, washed twice with phosphate-buffered saline
(PBS) solution and stored at -20°C until further use.

Extraction and separation of Escherichia coli proteins by 
two-dimensional gel electrophoresis
To obtain raw protein extracts cell pellets were resus-
pended in a lysis buffer containing 7 M urea, 2 M thiou-
rea, 4% (w/v) CHAPS, 1% (w/v) dithiothreitol (DTT),

Experimental set-up with a cascade of two continuous stirred tank reactors connected in seriesFigure 4
Experimental set-up with a cascade of two continu-
ous stirred tank reactors connected in series. The dilu-
tion rate D1 of the growth reactor was kept constant at 
0.225 h-1 adjusting the fresh media stream F0. The dilution 
rate D2 of the stress bioreactor was also kept constant, but it 
amounted 1.1 * D1 due to the use of a second fresh substrate 
feed F02, together with the reactor stream F1.
Page 11 of 15
(page number not for citation purposes)



Proteome Science 2009, 7:36 http://www.proteomesci.com/content/7/1/36
0.5% (w/v) amidosulfobetaine-14 (ASB-14), 0.5% (v/v)
Triton X-100, 0.8% (w/v) Pharmalyte™ pH 3-10, and 5
mM Pefabloc. The cells were disrupted by ultrasonication
in an ice bath for 2 min with the Sonifier S-250 D (Bran-
son Ultrasonics Corp., Danbury, Connecticut, USA)
applying an interval pause each 0.5 s with amplitude of
30%. Insoluble cell components were separated by cen-
trifugation at 13.000 g for 15 min at 4°C. To remove DNA
and RNA components a phenol precipitation and subse-
quent acetone extraction resulted in the best 2D-gel elec-
trophoresis. The proteins were extracted with TE-buffer
(10 mM EDTA, pH 7.4) saturated phenol. Proteins
formed a white interphase between the phenolic and the
aqueous phases. Subsequently the precipitated proteins
were separated by centrifugation at 13.000 g for 15 min at
4°C, the protein pellets were washed twice with cold ace-
tone (-20°C), dried under vacuum (speed vac) and stored
at -20°C until use. The extracted proteins were dissolved
in rehydration buffer (7 M urea, 2 M thiourea, 4% (w/v)
CHAPS, 1% (w/v) DTT, 0.5% (w/v) ASB-14, 0.5% (v/v)
Triton X-100, 0.5% IPG buffer pH 3-10 and trace amount
of bromphenol blue). Insoluble components were sepa-
rated by centrifugation at 13.000 g for 15 min at 4°C. The
protein concentration measurement was carried out using
the 2D-Quant-Kit (Amersham Bioscience, Buckingham-
shire, GB) according to the manufacturer's instructions.
250 μg protein of each sample were applied to the first-
dimensional gel electrophoresis of isoelectric focusing
(IEF) using Immobiline DryStrip gels of pH 3-10 (Bio-
Rad, Hercules, USA) by in-gel rehydration in a PROTEAN
IEF Cell Isoelectric Focusing System (BioRad, Hercules,
California, USA) at 20°C and with the following settings:
Rehydration: 50 V, 12 h; 200 V, 1 h; 500 V, 1 h; 1000 V, 1
h; linear gradient from 1000 V to 10000 V within 0.5 h;
10000 V, 8 h. For each sample duplicate gels were ana-
lysed. Subsequently the IPG strips were consecutively
equilibrated in the SDS Equilibration buffer 1 (6 M urea,
0.05 M Tris-HCl pH 8.8, 2% (w/v) SDS, 30% glycerol, 1%
(w/v) DTT) and SDS Equilibration buffer 2 (6 M urea,
0.05 M Tris-HCl pH 8.8, 2% (w/v) SDS, 30% Glycerol,
2.5% (w/v) iodacetamide and trace amount of bromphe-
nol blue) for 15 min. The SDS-PAGE, the second dimen-
sional gel electrophoresis, was carried out using a 12.5%
gel (12.5% acrylamide T-30%, 0.375 M Tris-HCl pH 8.8,
10% (w/v) SDS, 10% (w/v) ammonium persulfate (APS),
10% (v/v) tetramethylethyleneamine (TEMED)) and sep-
arated at 25°C with the following settings: 2 W/gel for 1
h, 100 V 20 h until the bromphenol blue dye front
reached the bottom of the gel. The proteins were locked
into position by the use of a fixation-solution (30% (v/v)
Ethanol, 10% (v/v) acetic acid) overnight. Afterwards the
gels were stained with the fluorescent dye ruthenium-II-
bathophenanthrolin disulfonate (RuPBS) [104] for 6 h
and scanned with PharosFX (Bio-Rad). The analysis of the
protein spot intensity, which is defined as the ratio of the
single spot volume to the total spot volumes of all protein

spots on a 2D-gel, and the characterization of the expres-
sion changes of proteins was performed with the DELTA
2D Sofware, Version 3.4 (Decodon, Greifswald, Ger-
many).

Enrichment of membrane proteins using triton-X-114
The protein samples were prepared according to the
method described by Bordier [105]. Briefly, after cell dis-
ruption by ultrasonication, the samples were centrifuged
in a Beckman 70.1 Ti rotor (Beckman-Coulter, Fullerton,
California, USA) at 170.000 g for 1 h at 4°C. The proteins
of the separated membrane components were extracted
using 10 mM Tris-HCl, pH 7.4, 150 mM NaCl, and 0.5
and 1.0% Triton-X-114 at 0°C. The samples were overlaid
on a cushion of 6% (w/v) sucrose, 10 mM Tris-HCl, pH
7.4, 150 mM NaCl, and 0.06% Triton-X-114, incubated 3
min at 30°C and centrifuged at 300 g for 3 min at room
temperature. The receiving oily droplet was retained and
the supernatant was extracted using 0.5% Triton-X-114 as
described above. The second droplet coming from the
extraction using 1.0% Triton-X-114 was unified with the
first droplet and stored at -20°C until use for the 2D-gel
analysis.

Enrichment of membrane proteins using sodium carbonate 
treatment
After cell disruption by ultrasonication, the samples were
centrifuged in the Beckman 70.1 Ti rotor (Beckman-Coul-
ter) at 170.000 g for 1 h at 4°C. The membrane proteins
were enriched according to the method described previ-
ously in Fujiki et al. [106]. The membrane pellet was
diluted in 6 ml of 100 mM sodium carbonate, pH 11.5
and incubated at 0°C for 30 min. The samples were cen-
trifuged in polycarbonate tubes at 4°C for 1 h at 170.000
g. The dissolved proteins in the supernatant were precipi-
tated using 10% TCA, washed twice using ice cooled ace-
tone and stored at -20°C until use for the two-
dimensional gel electrophoresis. The receiving membrane
pellet after ultracentrifugation was extracted again using
100 mM sodium carbonate, incubated at 0°C for 30 min
and centrifuged at 4°C for 1 h at 170.000 g. The proteins
in the supernatant were precipitated again using 10%
TCA.

Enrichment of membrane proteins with the aid of a rehydration 
buffer
The cells were dissolved in lysis buffer and disrupted by
ultrasonication. Afterwards, the samples were centrifuged
in the Beckman 70.1 Ti rotor (Beckman-Coulter) at
170.000 g for 1 h at 4°C. The receiving membrane pellet
was resuspended in rehydration buffer (7 M urea, 2 M
thiourea, 4%(w/v) CHAPS, 1% (w/v) DTT, 0.5% (w/v)
ASB-14, 0.5% (v/v) Triton X-100, 0.5% IPG buffer pH 3-
10 and trace amount of bromphenol blue) and used for
two-dimensional gel electrophoresis.
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Protein analysis by mass spectrometric analysis and 
identification using protein databases
Protein spots showing more than 5-fold increase or
decrease in spot intensity were cut off from the 2D-gels
and digested with trypsin according to a method
described previously [107]. The digested proteins were
extracted and purified with reversed-phased C18 ZipTips
(Millipore, Bedford, Massachusetts, USA). Matrix-assisted
laser desorption ionization time-of-flight mass spectrom-
etry (MALDI-TOF MS) with a Bruker Ultraflex time-of-
flight mass spectrometer (Bruker Daltonik GmbH,
Bremen, Germany) was carried out as described by Wang
et al. [107]. To identify the proteins the public protein
sequence database Mascot (Matrix Science Ltd., UK, http:/
/www.matrixscience.com) was consulted using the public
databases NCBInr and SWISS-PROT/TrEMBL. The follow-
ing settings were used for the identification: two missed
cleavage sites were allowed, cysteine was carbamidometh-
ylated and methionine was allowed to be partially oxi-
dized.
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