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Abstract
Background: Predicting the function of an unknown protein is an essential goal in bioinformatics.
Sequence similarity-based approaches are widely used for function prediction; however, they are
often inadequate in the absence of similar sequences or when the sequence similarity among known
protein sequences is statistically weak. This study aimed to develop an accurate prediction method
for identifying protein function, irrespective of sequence and structural similarities.

Results: A highly accurate prediction method capable of identifying protein function, based solely
on protein sequence properties, is described. This method analyses and identifies specific features
of the protein sequence that are highly correlated with certain protein functions and determines
the combination of protein sequence features that best characterises protein function. Thirty-three
features that represent subtle differences in local regions and full regions of the protein sequences
were introduced. On the basis of 484 features extracted solely from the protein sequence, models
were built to predict the functions of 11 different proteins from a broad range of cellular
components, molecular functions, and biological processes. The accuracy of protein function
prediction using random forests with feature selection ranged from 94.23% to 100%. The local
sequence information was found to have a broad range of applicability in predicting protein
function.

Conclusion: We present an accurate prediction method using a machine-learning approach based
solely on protein sequence properties. The primary contribution of this paper is to propose new
PNPRD features representing global and/or local differences in sequences, based on positively and/
or negatively charged residues, to assist in predicting protein function. In addition, we identified a
compact and useful feature subset for predicting the function of various proteins. Our results
indicate that sequence-based classifiers can provide good results among a broad range of proteins,
that the proposed features are useful in predicting several functions, and that the combination of
our and traditional features may support the creation of a discriminative feature set for specific
protein functions.
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Background
The need to analyse the massive accumulation of biologi-
cal data generated by high-throughput human genome
projects has stimulated the development of new and rapid
computational methods. Computational approaches for
predicting and classifying protein functions are essential
in determining the functions of unknown proteins in a
faster and more cost-effective manner, because experi-
mentally determining protein function is both costly and
time-consuming. Approaches based on sequence and
structure comparisons play an important role in predict-
ing and classifying the function of unknown proteins.
Generally, if an unknown gene or protein sequence is
identified, researchers may carry out a sequence similarity
search using BLAST [1], PSI-BLAST [2], or FASTA [3] to
find similar proteins or annotation information in public
databases. However, proteins that have diverged from a
common ancestral gene may have the same function but
different sequences [4,5]. As a result, sequence similarity-
based approaches are often inadequate in the absence of
similar sequences or when the sequence similarity among
known protein sequences is statistically weak (called the
"twilight zone" or "midnight zone") [6-12]. Thus,
researchers should be cautious when using this approach,
because its efficiency is limited by the availability of anno-
tated sequences in public databases and a high-similarity
BLAST search result does not always imply homology
[13,14]. Structure similarity-based approaches – such as
Deli[15] or MATRAS [16], both of which use structure
comparisons – have routinely been used to identify pro-
teins with similar structures, because protein structural
information is better conserved than sequence informa-
tion [17,18]. Nevertheless, proteins with the same func-
tion can have different structures, and a structural
comparison through structure determination is more dif-
ficult than a sequence comparison [9,19,20].

Recently, several researchers have developed methods for
classifying and predicting protein function independent
of sequence or structural alignment [5-9,20-50]. Rather
than making predictions based on direct sequence or
structural comparisons, these approaches use various fea-
tures to predict protein function, such as protein length,
molecular weight, number of atoms, grand average of
hydropathicity (GRAVY), amino acid composition, perio-
dicity, physicochemical properties, predicted secondary
structures, subcellular location, sequence motifs or highly
conserved regions, and annotations in protein databases.
These features include statistics extracted from the protein
sequence, structure, and annotation. In addition, to
obtain good predictive power, various machine-learning
algorithms such as support vector machines (SVMs), neu-
ral networks, naïve Bayes classifiers, and ensemble classi-

fiers have been used to build classification and prediction
models. Of these, the most widely used machine-learning
algorithm for classification and prediction of protein
function is SVM [5-7,22,26,27,29,31,36,39-43,45].

A method for classifying the functions of homodimeric,
drug absorption, drug delivery, drug excretion, and RNA-
binding proteins, among others, has been proposed by
Cai et al. [29]. Classification of protein function was per-
formed using an SVM statistical learning algorithm, based
on features such as amino acid composition, hydropho-
bicity, solvent accessibility, secondary structure, surface
tension, charge, polarisability, polarity, and normalised
van der Waals volume. Cai et al. [29] found that the testing
accuracy of protein classification was in the range 84–96%
and suggested that amino acid composition, hydropho-
bicity, polarity, and charge play more critical roles than
other features. Recently, Tung et al. [40] proposed a pre-
diction method for ubiquitylation sites using three data-
sets (amino acid identity, physicochemical properties,
and evolutionary information) and three machine-learn-
ing algorithms (k-nearest neighbour, SVM, and naïve
Bayes). The greatest accuracy (72.19%) was obtained
using SVM with 531 physicochemical properties as fea-
tures. Moreover, accuracy improved from 72.19% to
84.44% when 31 physicochemical properties were
selected and used based on feature selection by an inform-
ative physicochemical property mining algorithm
(IPMA). In addition, Li et al. [45] demonstrated the ability
of the SVM prediction method to identify potential drug
targets. On the basis of amino acid composition, hydro-
phobicity, polarity, polarisability, charge, solvent accessi-
bility, and normalised van der Waals volume, they
obtained an accuracy of 84% in predicting known drug
targets versus putative nondrug targets. In that study, the
performance of the SVM model did not change signifi-
cantly with a greater number of negative targets, as deter-
mined from experiments using various ratios of negative
to positive samples.

Protein function has been predicted using naïve Bayes
classifiers in several studies [21,49,50]. The FEATURE
framework for recognition of functional sites in macro-
molecular structures was developed by Halperin et al.
[49]. They used naïve Bayes classification to find and
weigh the most informative properties that distinguish
sites from nonsites, using a large number of physicochem-
ical properties. In another study, Gustafson et al. [50] sug-
gested a classification method for identification of genes
essential to survival by using naïve Bayes classification.
They focused on easily obtainable features such as open
reading frame (ORF) size, upstream size, phyletic reten-
tion, amino acid composition, codon bias, and hydro-
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phobicity, and they concluded that the best performing
feature was phyletic retention or the presence of an ortho-
logue in other organisms.

Neural networks are also frequently used for function pre-
diction [23-25,36]. For example, six enzyme classes and
enzymes/nonenzymes were predicted by Jensen et al. [24],
based solely on a few meaningful features such as O-β-
GlcNAcsites, N-linked glycosylation, secondary structure,
and physicochemical properties. Function prediction was
carried out using a neural network, and certain meaning-
ful features – such as differences in secondary structures
between enzymes and nonenzymes – were analysed. The
discriminative ability of each feature was represented by
its correlation coefficient.

Ensemble classifiers have recently become popular for
protein function classification [25,35,46,47,51-55]. Zhao
et al. [35] suggested that no single-classifier method can
always outperform other methods and that ensemble clas-
sifier methods outperform other classifier methods
because they use various types of complementary infor-
mation. In comparing the performance of classifiers for
predicting glycosylation sites, Caragea et al. [52] demon-
strated that ensembles of SVM classifiers outperformed
single SMV classifiers. In addition, Guan et al. [51] illus-
trated the benefits of using an SVM-based ensemble
framework by analysing the performance of ensembles of
three classifiers as a single SVM, a hierarchically corrected
combination of SVMs, and naïve Bayes classifiers. Ge et al.
[53] provided evidence that ensemble classifiers outper-
form single decision tree classifiers by comparing C4.5
with several ensemble classifiers (i.e. random forest,
stacked generalisation, bagging, AdaBoost, LogitBoost,
and MultiBoost) for classification of premalignant pan-
creatic cancer mass-spectrometry data. A prediction
method using a domain-based random forest of decision
trees to infer protein-protein interactions (PPIs) was pro-
posed by Chen et al.[46]; in experiments using a Saccharo-
myces cerevisiae dataset, they showed that the random-
forest method achieved higher sensitivity (79.78%) and
specificity (64.38%) than maximum likelihood estima-
tion (MLE).

These previous studies exploit direct relationships
between basic protein properties and their functions to
predict protein function without consideration of
sequence or structural similarities. Among these studies, a
wide variety of features or only a few meaningful features
were selected to increase the performance of function pre-
diction based on experience or a few heuristics. However,
in most of the previous studies, features that represent
subtle distinctions in small portions of protein sequences
have not been sufficiently represented. Although proteins
share similar structural organisations, biological proper-
ties, and sequences, small changes in amino acids of a

protein sequence can result in different functions
[19,20,56]. Although local information such as the pres-
ence of motifs or highly conserved regions is useful for
function prediction, motif detection problems present
another arduous task. Therefore, in this study, a method
was developed to detect small changes in amino acids
within a sequence.

The method described here is characterised by three pri-
mary features designed to address specific problems
inherent in protein function prediction. First, this
approach was designed to accurately predict various pro-
tein functions over a broad range of cellular components,
molecular functions, and biological processes without
using sequence or structural similarity information. Sec-
ond, this study was designed to determine whether the use
of feature selection improves prediction performance for
various protein functions. In other words, does the use of
more features related to the protein sequence increase the
accuracy of prediction? Third, this study was designed to
determine whether local information for the protein
sequence is meaningful in predicting protein function,
and if so, to determine which features are correlated with
protein function.

In summary, a highly accurate prediction method capable
of identifying protein function is proposed. One of the
advantages of this method is that it requires only the pro-
tein sequence for feature extraction; information vis-à-vis
predicted features or structural properties is not required.
In addition, four features that represent subtle differences
in local regions of the protein sequence – differences due
to positively and negatively charged residues – are intro-
duced. A total of 484 features, including 451 traditional
features and 33 features introduced in this study, were
used to predict 11 protein functions. We applied two
machine-learning algorithms (i.e. SVM and random for-
ests) with and without feature selection to the data set to
predict protein function. The prediction performance for
each protein function was evaluated, and the features
most relevant to prediction of specific protein functions
were determined.

Methods
Data preparation
To predict the functions of a variety of proteins from a
broad range of cellular components, molecular functions,
and biological processes, 16,618 positive sample
sequences and 35,619 negative sample sequences were
collected and comprised the dataset. The dataset included
positive and negative samples for 11 protein functions
selected from the Swiss-Prot database [57] using the SRS
program [58]. Positive samples are sample sequences
associated with a specific protein function and were
labelled as belonging to that class of proteins. Negative
samples for each protein class were selected from proteins
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that do not belong to that class and from enzyme families
such as oxidoreductases, hydrolases, lyases, and isomer-
ases. For example, the composition of the negative sample
set for fatty acid metabolism is shown in Table 1. Proteins
that consisted of fewer than 30 amino acids were excluded
from the dataset. In the feature extraction step, proteins
that had missing values were also excluded. For hypothet-
ically or automatically annotated sequences in protein
databases such as GenBank and Swiss-Prot, the percentage
of incorrect annotations is not known, because the anno-
tations do not include a description of the specific meth-
odology used for sequence analysis; this sometimes yields
incorrect search results [14]. However, Swiss-Prot incor-
porates corrections provided by user forums and commu-
nities [13]; therefore, protein sequences from the Swiss-
Prot database were used in the present study.

Feature extraction from protein sequences
A total of 484 features were extracted solely from the pro-
tein sequences described in this study. These features
included traditional features adopted from previous stud-
ies [7,30-32] and new features extracted using the novel
method developed in this study. Among the traditional
features, 34 were extracted from the Swiss-Prot protein
sequences [57] using the ProtParam tool [59]. Traditional
features consisted of amino acid composition, protein
length, number of atoms, molecular weight, GRAVY, and
theoretical isoelectric point (pI), among others. In addi-
tion, two ways of using positively charged residues (i.e.
lysine and arginine or histidine, lysine, and arginine), the
percent composition of each amino acid pair, and 17 fea-
tures based on physicochemical properties (i.e. 16 proper-
ties adopted from Syed et al. [20] and one additional
property) were calculated.

The importance of negatively/positively charged residues
in protein function has been described in several studies

[20,23,24,38,60]. The 20 standard amino acids are
divided into negatively charged residues, positively
charged residues, and neutral residues according to their
pI. Negatively charged residues (aspartic acid and
glutamic acid) have lower pIs, while positively charged
residues (arginine and lysine) have higher pIs. Oppositely
charged residues attract, while similarly charged residues
repel each other. To account for subtle differences that
occur in small regions of the protein sequences, features
representing the percentage change in charged residues as
well as the distribution of charged residues were designed
and computed.

The method used to identify these new features is simple.
PPR was calculated using the following equation:

where #AA is the total number of amino acids in a
sequence and #PP is the total number of continuous
changes from one positively charged residue to the next
positively charged residue in each protein sequence. Sim-
ilar to PPR, NNR was calculated using the following equa-
tion:

where #NN is the total number of continuous changes
from one negatively charged residue to the next negatively
charged residue. PNPR was calculated using the following
equation:

where #PNP is the total number of continuous changes
from a positively charged residue to the next negatively
charged residue or vice versa. Finally, Dist(x, y) is the distri-
bution function for PP, NN, or PNP in the interval from x
to y in the sequence, with the stipulation that x <y. PPRD-
ist(x, y) was defined as follows:

where #PP(x, y) is the total number of PP occurrences in the
interval from x to y. Similarly, NNRDist(x, y) was computed
as follows:

PPR
PP
AA

= − ×(# )
#

1
100 (1)

NNR
NN

AA
= − ×(# )

#
1

100 (2)

PNPR
PNP

AA
= − ×(# )

#
1

100 (3)

PPRDist
PP x y

AAx y( , )

# ( , )
#

= ×100 (4)

NNRDist
NN x y

AAx y( , )

# ( , )
#

= ×100 (5)

Table 1: Negative samples for the fatty acid metabolism protein 
class

Protein class Number of proteins

Transport 637
Transcription 538
Gluconate utilisation 60
Amino acid biosynthesis 393
DNA-binding 486
Acetylcholine receptor inhibitor 103
G-protein coupled receptor 220
Guanine nucleotide-releasing factor 370
Fibre protein 47
Transmembrane 351
Oxidoreductases 58
Hydrolases 75
Isomerases 50
Lyases 72
Other proteins 354
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where #NN(x, y) is the total number of NN occurrences in
the interval from x to y.PNPRDist(x, y) was computed as fol-
lows:

where #PNP(x, y) is the total number of PNP occurrences of
the interval from x to y. These features provide local infor-
mation on a protein sequence based on the values of x and
y. For example, the alcohol dehydrogenase1A protein
(Swiss-Prot:P07327) consists of 375 amino acids. Let us
assume that the x value is the 76th amino acid (21%), the
y value is the 113th amino acid (30%), and the value of
PNP is 4. PNPRDist(21,30) is thus (4/375) × 100 = 1.06667.
We believe these features are important because slight
regional differences among similar proteins exist in
sequences within the same family. Certain protein func-
tions are determined by a few residues within a small part
of the sequence [61]. A total of 33 features were generated
based on the above formulae, dividing the sequence
length into 10 local regions, specifically, PPR (1), NNR
(1), PNPR (1), PPRDist(x, y) (10), NNRDist(x, y) (10), and
PNPRDist(x, y) (10). All the traditional and novel features
used in this study are described in detail in Table 2.

Feature selection
Feature selection is an important step in developing an
accurate classification method. There are many redundant
and/or irrelevant features in real-world problems, and var-
ious approaches have been developed to address these
features. The primary goals of feature selection [62-65] are
to gain a more thorough understanding of the underlying
processes influencing the data and to identify discrimina-
tive and useful features for classification and prediction.
In addition, classification and prediction performance can
be improved by avoiding overfitting. Although additional
features provide more information and could potentially
improve classification performance, a greater number of
features also adds difficulty in building a classifier. For n
features there are n2 possible feature subsets; therefore, to
achieve optimal performance, it is necessary to generate
all possible subsets and examine their performance.

Various feature selection methods have been developed to
select an optimal feature set and analyse the discrimina-
tory power of each feature. Feature subset selection tech-
niques can be organised into two categories: filter and
wrapper methods. Filter methods, which apply statistical
approaches without any information on the classification
algorithm, are used to select a specific subset of poten-
tially discriminating features. Wrapper methods use a
machine-learning algorithm, called a perfect "black box,"
to assess the quality of a feature subset. For this study, cor-
relation-based feature selection (CFS) [34,65] was used to

select a subset of discriminative features. CFS was chosen
for the following reasons. First, when the number of fea-
tures is large, filter methods are faster than wrapper meth-
ods because the former do not require the use of learning
machines. In addition, filter methods can be used as a pre-
processing step to reduce space dimensionality and pre-
clude overfitting. Second, selection and evaluation of a
subset of features is preferable to individually important
features because a superior classifier can be constructed
from features that interact or by a combination of many
features that together have discriminatory power. Even if
one or two features are not useful alone, these features
may be valuable in combination with other features and
thus improve the discriminatory performance of a classi-
fier [64].

CFS is a filter method. It uses a search algorithm, along
with a function for evaluating the merit of a feature subset,
based on the hypothesis that "a good feature subset con-
tains features highly correlated with the class, yet uncorre-
lated with each other" [65]. This method evaluates subsets
of features, rather than individual features, as discussed
above. At the core of the CFS is the subset evaluation heu-
ristic. It eliminates irrelevant features, as they will be poor
predictors of classes. In addition, redundant features are
identified that will be highly correlated with one or more
other features. A heuristic search to traverse the space of
the feature set is conducted, and the subset with the high-
est merit found during the search process is reported. The
subset with the highest merit preserves the most important
features – those that are highly correlated with the class
and have low inter-correlation with one another. This
subset is then used to reduce dimensionality. CFS is
described in greater detail elsewhere [65].

In the present study, many features were discarded during
the feature subset selection procedure using CFS. Merit
was calculated using the following equation:

Where Merits is the score of a feature subset S that com-

prises k features,  is the average correlation between the

individual features and the class, and  is the average

inter-correlation among the features. The features selected
by CFS for each class are listed in Table 3.

Finding and identifying important features that discrimi-
nate protein function is an arduous task; however, it is
possible to evaluate which discriminative features are
important using feature subset selection methods. For

PNPRDist
PNP x y

AAx y( , )

# ( , )
#

= ×100 (6)

Merit
krcf

k k k r ff
s =

+ −( )1
(7)

rcf
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instance, using the CFS method, for the transmembrane
protein class (Table 4, last row), the number of traditional
features selected was 33 of 451 features and the number of
new features selected was 3 of 33 features. Selection rates
were then calculated as (33/451) × 100 = 7.76% and (3/
33) × 100 = 9.09%. Several of the new features were pre-
served in every subset selected by the CFS method, except
for the transport class. Therefore, it can be inferred that

these features are highly correlated with the class and that
they have low inter-correlation with each other.

Support vector machines and random forests
In the preprocessing step, numeric features were discre-
tised via an MDL-based discretisation method [66]. Each
dataset was randomly split into a training set (90%) and a
blind test set (10%). The numbers of negative and positive

Table 2: Features used for protein function classification

Feature Description Dimension

1 Number of amino acids Number of residues in each protein 1
2 Molecular weight Molecular weight of the protein 1
3 Theoretical pI The pH at which the net charge of the protein is zero (isoelectric point) 1
4 Amino acid composition Percentage of each amino acid in the protein 20
5 Positively charged residue_2 Percentage of positively charged residues in the protein (lysine and arginine) 1
6 Positively charged residue_3 Percentage of positively charged residues in the protein (histidine, lysine, and arginine) 1
7 Number of atoms Total number of atoms 1
8 Carbon Total number of carbon atoms in the protein sequence 1
9 Hydrogen Total number of hydrogen atoms in the protein sequence 1
10 Nitrogen Total number of nitrogen atoms in the protein sequence 1
11 Oxygen Total number of oxygen atoms in the protein sequence 1
12 Sulphur Total number of sulphur atoms in the protein sequence 1
13 Extinction coefficient_All Amount of light a protein absorbs at a certain wavelength 

(assuming ALL Cys residues appear as half cysteines)
1

14 Extinction coefficient_No Amount of light a protein absorbs at a certain wavelength 
(assuming NO Cys residues appear as half cysteines)

1

15 Instability index The stability of the protein 1
16 Aliphatic index The relative volume of the protein occupied by aliphatic side chains 1
17 GRAVY Grand average of hydropathicity 1
18 PPR Percentage of continuous changes from positively charged residues to positively charged 

residues
1

19 NNR Percentage of continuous changes from negatively charged residues to negatively charged 
residues

1

20 PNPR Percentage of continuous changes from positively charged residues to negatively charged 
residues or from negatively charged residues to positively charged residues

1

21 NNRDist(x, y) Percentage of NNR from x to y (local information) 10
22 PPRDist(x, y) Percentage of PPR from x to y (local information) 10
23 PNPRDist(x, y) Percentage of PNPR from x to y (local information) 10
24 Charged Physicochemical property 1
25 Negatively charged residues Percentage of negatively charged residues in the protein 1
26 Polar Physicochemical property 1
27 Aliphatic Physicochemical property 1
28 Aromatic Physicochemical property 1
29 Small Physicochemical property 1
30 Tiny Physicochemical property 1
31 Bulky Physicochemical property 1
32 Hydrophobic Physicochemical property 1
33 Hydrophobic and aromatic Physicochemical properties 1
34 Neutral, weakly and 

hydrophobic
Physicochemical properties 1

35 Hydrophilic and acidic Physicochemical properties 1
36 Hydrophilic and basic Physicochemical properties 1
37 Acidic Physicochemical property 1
38 Polar and uncharged Physicochemical properties 1
39 Amino acid pair ratio Percentage compositions for each of the 400 possible amino acid dipeptides 400

Total 484
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samples in the training and test data sets are shown in
Table 5. Validation was performed by 10-fold cross-vali-
dation on the training set, and test results for the blind test
process were obtained using a separate test dataset. No
sample was included in both the training and testing sets.
We present only the average performance of the 10-fold

cross-validation process because the Weka tool [67] does
not provide experimental results for each iteration of k-
fold cross-validation.

The abilities of the SVM and random forest techniques to
predict and classify protein functions have recently been

Table 3: Features selected by CFS for each protein class

Protein class Selected features

Transport R, G, H, I, M, positively charged residue_3, carbon, CC, CD, CE, CH, CK, CN, CQ, CW, CY, FM, GW, HC, 
HR, IC, IG, LF, LG, LM, MF, MM, MQ, PC, QC, SC, TC, WD, YH, polar, hydrophobic, hydrophobic and 
aromatic, hydrophilic and basic

Transcription D, C, Q, F, V, positively charged residue_3, sulphur, extinction coefficient_all, instability index, aliphatic index, 
GRAVY, NNR, PNPR, PPRDist(41,50), CC, CF, CV, CW, CY, DD, DE, EE, EF, EH, EL, FC, FF, FW, GC, HD, HH, 
IF, LT, MN, QQ, TL, TW, VV, WI, WV, WW, WY, charged, polar, aliphatic, aromatic, hydrophobic and 
aromatic, hydrophilic and acidic, hydrophilic and basic, acidic, polar and uncharged

Translation NumOfAAs, D, L, hydrogen, GRAVY, PPR, NNR, NNRD(11,20), PPRD(31,40), PNPRD(41,50), PPRD(51,60), PNPRD(81,90), 
NNRD(91,100), PNPRD(91,100), AA, AG, AH, AM, AQ, CC, CE, CN, CP, DE, DH, EE, EG, EQ, FD, FK, FQ, FW, 
GC, GV, GW, GY, HI, IC, IP, IY, KE, KK, KR, KS, KW, LG, LK, LT, LV, LW, MM, MW, NH, PE, PK, PT, PY, 
QF, QN, RN, SD, TG, TK, VA, VG, VL, WC, WE, WG, WK, YD, YS, YV, charged, aliphatic, hydrophilic and 
acidic

Gluconate utilisation Positively charged residue_3, instability index, aliphatic index, PNPRDist(11,20), PPRDist(21,30), PPRDist(31,40), 
PPRDist(81,90), PPRDist(91,100), AG, AH, AV, AW, AY, CC, CI, DG, DI, DR, EG, EW, FH, FL, FP, GC, GE, GF, GI, 
GK, GM, GP, GR, HN, IG, KL, KM, KW, LI, LM, MG, MM, MQ, MV, PC, PK, PN, PP, SR, SY, TD, VF, VM, 
WN, WR, WT, YS, YV, aromatic, hydrophilic and acidic, polar and uncharged

Amino acid biosynthesis NumOfAAs, theoretical pI, D, C, G, S, sulphur, instability index, aliphatic index, GRAVY, PPR, NNR, 
NNRD(11,20), PNPRD(21,30), NNRD(91,100), CN, DC, DM, EC, EW, FP, FW, FY, GA, HP, IN, LC, MW, NF, NW, 
PC, PP, PS, QM, RC, RD, SC, WF, WG, WM, WN, WW, YR, YY, charged, aliphatic, tiny, bulky, hydrophobic, 
hydrophobic and aromatic, hydrophilic and acidic, acidic

Fatty acid metabolism NumOfAAs, R, D, C, Q, E, G, I, F, S, negatively charged residue, positively charged residue_3, instability 
index, aliphatic index, GRAVY, NNR, PNPR, PPRD(00,10), PNPRD(71,80), PPRD(81,90), PNPRD(81,90), PPRD(91,100), 
NNRD(91,100), AH, AR, CG, CI, DC, DN, DR, EC, EY, FA, FP, GA, GG, GL, GW, HH, HI, HM, HN, HP, HT, IR, 
IW, KA, KH, LF, LL, MC, MG, MH, MM, MR, NA, NP, PA, PC, PP, PR, PY, QM, QN, QP, RK, RR, RS, SM, SY, 
TD, TR, TS, TW, VQ, VW, WG, WP, WQ, WS, WW, YG, YI, YW, YY, charged, aliphatic, hydrophobic, 
hydrophilic and acidic, acidic

Acetylcholine receptor inhibitor Molecular weight, C, M, PNPRDist(00,10), NNRDist(11,20), NNRDist(71,80), AN, AT, CA, CC, CF, CN, CP, CS, DA, 
DF, DP, DS, EA, EI, ES, ET, FL, GC, HI, HQ, IC, II, IR, IT, KC, KE, KF, KL, KT, LD, LE, LN, LP, LQ, MK, NC, 
NV, RI, TC, VK, VN, VS, WC, YD, YT, tiny

G-protein coupled receptor Theoretical pI, D, C, Q, E, G, K, F, S, T, negatively charged residue, positively charged residue_3, sulphur, 
PNPR, PNPRDist(11,20), NNRDist(71,80), CC, CF, CH, CW, CY, FC, FI, FL, GQ, IC, IW, IY, LC, MW, SC, WG, 
WV, WY, aromatic, tiny, bulky, hydrophobic and aromatic, acidic

Guanine nucleotide-releasing factor A, Q, H, I, V, positively charged residue_2, positively charged residue_3, oxygen, instability index, aliphatic 
index, GRAVY, PPR, NNR, NNRDist(00,10), PPRDist(11,20), PNPRDist(21,30), NNRDist(31,40), PNPRDist(51,60), 
PNPRDist(61,70), NNRDist(91,100), CQ, DC, DH, EC, ED, EE, EP, EW, FN, HC, HD, HE, HH, HK, HM, HW, IV, 
KW, LE, LG, LK, MF, MI, PN, QC, QD, QE, QW, RL, SE, SP, TW, VG, VI, VV, WC, WD, WE, WF, WK, WS, 
WY, YW, hydrophobic, hydrophilic and acidic, hydrophilic and basic, acidic, polar and uncharged, polar

Fibre protein G, M, T, positively charged residue_2, NNRDist(81,90), DN, ER, FN, GD, GG, GN, GQ, GT, IN, IP, LC, LL, LT, 
NA, NG, NT, PF, SQ, TA, TG, TN, TW, WK, WN, charged, polar and uncharged

Transmembrane Theoretical pI, D, C, L, S, W, negatively charged residue, extinction coefficient_all, instability index, GRAVY, 
NNR, PNPR, PPRDist(71,80), AD, CC, CW, DA, EA, FC, FL, FW, LK, LL, LW, MW, PC, PP, SC, SL, TW, VD, 
WW, tiny, bulky, acidic
Page 7 of 19
(page number not for citation purposes)



Proteome Science 2009, 7:27 http://www.proteomesci.com/content/7/1/27
enhanced and found to be superior to other classification
algorithms [5,6,22,26,29,33,46,47]. SVM is essentially a
two-class classifier, although the classifier can be extended
to multiclass classifications. In this model, each object is
mapped to a point in a high-dimensional space, where
each dimension corresponds to a feature. The coordinates
of the point are the frequencies of the features in their cor-
responding dimensions. In the training step, SVM learns

the maximum-margin hyper-planes separating each class.
In the testing step, a new object is classified by mapping it
onto a point in the same high-dimensional space, divided
by the hyper-plane that was learned in the training step.

Recently, the random forest method [68] has also become
popular for protein function prediction. Random forests
is a classification algorithm that employs an ensemble of

Table 4: Selection ratios for traditional and new features in the CFS method

Protein class Number of selected features Merit value Traditional features (n = 451) New features
(n = 33)

Transport 38 0.302 8.43% 0%
Transcription 51 0.387 11.31% 9.09%
Translation 76 0.499 16.85% 27.27%
Gluconate utilisation 59 0.59 13.08% 15.15%
Amino acid biosynthesis 52 0.309 11.53% 15.15%
Fatty acid metabolism 90 0.303 19.96% 24.24%
Acetylcholine receptor inhibitor 52 0.974 11.53% 9.09%
G-protein coupled receptor 39 0.487 8.65% 9.09%
Guanine nucleotide-releasing factor 69 0.36 15.30% 27.27%
Fibre protein 31 0.481 6.87% 3.03%
Transmembrane 35 0.443 7.76% 9.09%

The merit value is the highest merit calculated for an optimal subset of the features for each class. The selected features are highly correlated with 
the class and have low inter-correlation with each other.

Table 5: Accuracy of predictions using training and blind test datasets with the SVM and random forest methods

Category Protein class Training set Test set SVM_FF SVM_CFS RF_FF RF_CFS

Positive Negative Positive Negative Train Test Train Test Train Test Train Test

Biological 
process

Transport 2,824 3,583 298 414 73.26 71.34 94.38 93.53 93.14 92.41 94.66 94.24

Transcription 3,644 3,872 415 421 87.78 85.04 96.62 96.65 94.25 94.61 94.65 94.73
Translation 139 1,886 16 210 98.81 98.67 98.37 97.78 97.87 96.90 98.07 97.34
Gluconate 
utilisation

53 420 7 46 98.73 98.11 98.94 98.11 97.04 98.11 98.30 100

Amino acid 
biosynthesis

2,769 3,970 289 460 73.55 76.63 90.28 92.12 95.69 96.12 96.29 96.12

Fatty acid 
metabolism

601 3,445 81 369 90.58 87.55 94.19 92 95.99 94.88 96.93 95.77

Molecular 
function

Acetylcholine 
receptor inhibitor

93 1,840 10 205 100 99.53 100 100 100 100 100 100

G-protein coupled 
receptor

2,571 3,828 263 448 76.04 77.07 98.76 98.17 96.62 97.74 97.60 97.46

Guanine nucleotide-
releasing factor

335 3,994 35 446 98.96 98.75 99.51 98.96 98.49 98.96 98.98 98.54

Cellular 
component

Fibre protein 42 1,266 6 140 99.84 99.31 99.92 99.31 99.38 99.31 99.84 98.63

Domain Transmembrane 1,904 3,930 223 426 80.01 79.81 97.15 97.84 96.02 97.84 96.46 97.38

The accuracy of predictions using the training dataset was determined when building the classification model using 10-fold cross validation, and the 
accuracy of predictions using the test dataset was determined using the built model. The accuracies of predictions for all the training and test 
datasets are presented to demonstrate a good balance between overfitting and underfitting. Positive: number of positive samples; negative: number 
of negative samples; FF: full features; CFS: correlation-based feature subset selection method. The bold values mean the highest values among four 
methods.
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classification trees that each use several bootstrap samples
of training data and a randomly selected subset of fea-
tures. The basic random forest method, using unpruned
decision trees, selects features at random at each decision
node. The final classification is obtained by combining
the results of the trees via voting.

To identify protein functions in this study, LibSVM
[69,70] and random forests [68] (available at Weka [67])
were used as the classification algorithms. The type of
SVM used was a C-SVC machine, and the kernel was a
radial basis function (RBF). The cost parameter was set at
4 and the other parameters were fixed at the default val-
ues. The cost parameter used in the training process was
selected from {0.5, 1, 2, 4, 6, 8, 10, 12}. For the datasets
used in this study, the RBF was found to provide the best
results. In the random forest method without feature
selection analysis, the number of trees was 10 and the
number of features was 9. In the random forest method
with feature selection analysis, the number of trees was 10
and the number of features was 6 or 7 because the number
of features selected by the feature selection method was
small.

Performance evaluation criteria
The following measures were used to assess the perform-
ance of the classifiers used in this study: accuracy, sensitiv-
ity, F-measure, Matthew's correlation coefficient (MCC)
[71,72], and the area under the receiver operating charac-
teristic curve (AUC) [42,71]. A trade-off between sensitiv-
ity and specificity was observed as the prediction
threshold was varied. AUC is an effective means of com-
paring the overall prediction performance of different
methods because it provides a single measure of overall
threshold-independent accuracy. An AUC and MCC of 1
indicate perfect prediction accuracy. These measures are
defined as follows:

where TP is the number of true positives, FP is the number
of false positives, TN is the number of true negatives, FN
is the number of false negatives, and recall is equivalent to
the sensitivity [21,73]. The formula for the AUC of a clas-
sifier is as follows:

where S0 = ∑ri, ri is the rank of the ith positive sample in
the ranked list, n0 is the number of positive samples, and
n1 is the number of negative samples [74,75].

Results and discussion
Performance of the four classification methods
One of the goals of our experiment was to find a more dis-
criminative and smaller feature set for specific function
prediction, based solely on sequence-based features.
Therefore, we initially gathered numerous features solely
from the protein sequence. The features that were redun-
dant or irrelevant were then removed by feature selection.
After feature selection, the remaining number of features
was small, while the accuracy of function classification
was greater than that of the full-feature set. The selected
features and the selection rates for the traditional features
and our new features are listed in Tables 3 and 4.

A summary of the performance of the four methods in
classifying the 11 protein classes is provided in Table 5
and Figure 1. Among all the methods, SVM without fea-
ture selection (SVM_FF) required more model-building
time and had the lowest performance. However, this
method did obtain the highest accuracy in two of the
blind tests, for translation and fibre proteins (2 of the 11
protein classes).

SVM with feature selection (SVM_CFS) slightly outper-
formed the random forest method with and without fea-
ture selection (RF_CFS and RF_FF, respectively) and
significantly outperformed SVM_FF. Given that more than
one method had equal accuracy for some classes, the
SVM_CFS method had the highest accuracy for classifying
transcription, acetylcholine receptor inhibitor, G-protein
coupled receptor, guanine nucleotide-releasing factor,
fibre, and transmembrane proteins (6 of the 11 protein
classes).

The random forest method without feature selection
(RF_FF) had the highest accuracy for the following blind
test sets: amino acid biosynthesis, acetylcholine receptor
inhibitor, guanine nucleotide-releasing factor, fibre, and
transmembrane proteins (5 of the 11 protein classes).

The random forest method with feature selection
(RF_CFS) had the highest accuracy for classifying trans-

Accuracy
TP TN

TP FN FP TN
= +

+ + +
(8)

Sensitivity
TP

TP FN
=

+
(9)

Specificity
TN

TN FP
=

+
(10)
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precision recall

precision recall
− = × ×

+
2

(11)
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TP FP TP FN TN FP TN FN
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( ) ( )
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ˆ ( ) /
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port, gluconate utilisation, amino acid biosynthesis, fatty
acid metabolism, and acetylcholine receptor inhibitor
proteins (5 of the 11 protein classes). Although both the
RF_FF and RF_CFS methods had the highest accuracy for
five protein classes, the performance of the RF_CFS
method was better than that of the RF_FF method in terms
of cost-effectiveness because a reduced-dimensional
model was produced.

After careful analysis of the selected feature subsets and
their performance in these experiments, the use of feature
selection was found to improve classifier performance, as
indicated in Table 5 and Figure 1. When comparing the
SVM_FF and SVM_CFS methods, translation was the only
protein class for which the SVM_FF method (AUC of
0.906, accuracy of 98.67) performed better than the
SVM_CFS method (AUC of 0.844, accuracy of 97.78). For
all the other classifications, the use of feature selection
improved classifier performance. For classification of
transport, transcription, amino acid biosynthesis, G-pro-
tein coupled receptor, and transmembrane proteins, both
accuracy levels and AUCs significantly improved when
feature selection was used. For example, the accuracy of
transmembrane protein classification improved (79.81 to
97.84) and the AUC increased (0.706 to 0.978). In addi-

tion, the number of features used for classification was 35
of 484. For the G-protein coupled receptor, 39 of 484 fea-
tures were included, and the accuracy of the classification
was dramatically improved by feature selection (77.07 to
98.17), as was the AUC (0.69 to 0.984).

Although the accuracy of the random forest method was
not significantly improved by feature selection, the AUC
value for RF_CFS was slightly higher than that for RF_FF,
except for the amino acid biosynthesis, acetylcholine
receptor inhibitor, and G-protein coupled receptor
classes. The larger the AUC, the better is the performance
of the model. By comparing the AUCs averaged over all 11
protein classes, the RF_CFS method was found to outper-
form the other methods (i.e. 0.995). Therefore, applying
CFS to the dataset yielded improved performance and a
more compact set of features.

For a more detailed evaluation of all the methods, several
performance measures were applied. Detailed results for
each method are presented in Tables 6, 7, 8, and 9, with a
focus on sensitivity, specificity, F-measure, and MCC. The
consistent performance of each method for predicting the
protein functions of the 11 protein classes in both the 10-
fold cross-validation test and the blind test demonstrates

Area under the ROC curves for the four methods for each protein classFigure 1
Area under the ROC curves for the four methods for each protein class.
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the validity of our methods: SVM_FF, ± 3.0; SVM_CFS, ±
2.1; RF_FF ± 1.8; and RF_CFS, ± 1.2 (± refers to the differ-
ence in accuracy between the training step and the blind
test step). These results indicate that our models have
good predictive power in discriminative testing processes.

Although good performance with the proposed new fea-
tures was obtained using feature selection, we performed
an additional experiment to demonstrate the usefulness
of the proposed features in a clear and simple way, with-
out relying on feature selection. The additional experi-
ments were carried out using the 451 traditional features
versus the 33 proposed features under the same condi-
tions as the above experiments, and the performance of
classification was compared (Tables 10 and 11). In the
performance comparison with SVM, classification using
only the 33 proposed features outperformed the 451 tra-
ditional features for 5 of the 11 protein classes (transport,
amino acid biosynthesis, fatty acid metabolism, G-protein
coupled receptor, and transmembrane). In the perform-
ance comparison with the random forest method, classifi-
cation using only the 33 proposed features was superior or
equal to use of the 451 traditional features for 4 of the 11

protein classes (translation, gluconate utilisation, fatty
acid metabolism, and acetylcholine receptor inhibitor).

Meaningful features for protein function prediction
The 451 traditional features used for prediction of protein
function have been described in previous reports [17,22-
24,28,32,36,37,43-45,76-78]. The present study intro-
duces new features based on negatively and positively
charged residues and analyses their utility. The average
number of new features selected by CFS was 5.4 for the 11
protein classes. The raw dataset was analysed for the
selected features, and three examples are provided in Fig-
ures 2, 3, and 4.

Figure 2 clearly demonstrates the differences in the means
and standard deviations of the nine features used to clas-
sify guanine nucleotide-releasing factor (the opaque col-
our at the base of the bar graphs indicates the standard
deviation). PPR and NNR for guanine nucleotide-releas-
ing factor were higher than for the negative samples. For
example, the NNR for guanine nucleotide-releasing factor
was 7.04 (mean) ± 1.72 (standard deviation), while the
NNR for the negative samples was 3.79 ± 2.0. It is worth

Table 6: Detailed results of SVM without feature selection (SVM_FF)

Protein class Sensitivity Specificity F-measure MCC

Transport 31.54 100 0.48 0.46
Transcription 71.08 98.81 0.83 0.73
Translation 81.25 100 0.90 0.9
Gluconate utilisation 85.71 100 0.92 0.92
Amino acid biosynthesis 39.45 100 0.57 0.53
Fatty acid metabolism 30.86 100 0.47 0.52
Acetylcholine receptor inhibitor 100 99.51 0.95 0.95
G-protein coupled receptor 38.02 100 0.55 0.53
Guanine nucleotide-releasing factor 82.86 100 0.91 0.9
Fibre protein 83.33 100 0.91 0.91
Transmembrane 41.26 100 0.58 0.56

MCC: Matthew's correlation coefficient

Table 7: Detailed results of SVM with feature selection (SVM_CFS)

Protein class Sensitivity Specificity F-measure MCC

Transport 87.58 97.83 0.92 0.87
Transcription 98.31 95.01 0.97 0.93
Translation 68.75 100 0.82 0.82
Gluconate utilisation 85.71 100 0.92 0.92
Amino acid biosynthesis 79.58 100 0.89 0.84
Fatty acid metabolism 56.79 99.73 0.72 0.71
Acetylcholine receptor inhibitor 100 100 1.00 1.00
G-protein coupled receptor 99.24 97.54 0.98 0.96
Guanine nucleotide-releasing factor 88.57 99.78 0.93 0.92
Fibre protein 83.33 100 0.91 0.91
Transmembrane 97.76 97.89 0.97 0.95

MCC: Matthew's correlation coefficient
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noting that negatively charged residues appear more fre-
quently in the guanine nucleotide-releasing factor
sequence than in those of other proteins. Furthermore,
the NNR and PPR features are related to the number or
percentage of negatively and positively charged residues,
as these features were computed using a method based on
charged residues. Because of this relationship, the mean
percentages of positively charged residues and negatively
charged residues were found to be similar to the PPR and
NNR values, respectively. If the PPR for a specific protein
family was high compared to that for other families, then
the number of positively charged residues in that protein
family was also higher than that in other families; simi-
larly, if the NNR for a specific protein family was low, then
the number of negatively charged residues in that protein
family was also low. However, if the percentage of nega-
tively charged residues was high and the NNR value was
low, it is possible to infer that both negatively and posi-
tively charged residues are present in the sequences,
because NNR and PPR provide information on whether
the two charged residue types co-exist in the sequence.
The greater the difference between the percent negatively
charged residues and the NNR, the more frequent is the

alternating occurrences of negatively and positively
charged residues. For instance, golgi transport protein 1
[Swiss-Prot:Q9USJ2] consists of 129 amino acids with five
negatively charged residues and eight positively charged
residues. However, NNR and PPR were 0 and 2.32, respec-
tively. This indicates that although the protein includes
five negatively charged residues, the positively and nega-
tively charged residues in the sequence always alternate
among the neutral residues.

Previous studies in this field have analysed only the
number or percentage of positively and negatively
charged residues; however, the positions or regions of the
charged residues in the sequence are very important in
determining protein function and structure [79-82]. For
example, Verma et al. [79] analysed a large panel of
plaque-purified recovered viruses and demonstrated that
the negatively charged residues at positions 440 and 441
were key residues that appeared to be involved in virus
assembly. Therefore, although the total number of posi-
tively and negatively charged residues is important, resi-
dues in specific positions or local regions of the sequences
are also important. Dist(x, y) for PPR, NNR, and PNPR pro-

Table 8: Detailed results of the random forest method without feature selection (RF_FF)

Protein class Sensitivity Specificity F-measure MCC

Transport 87.58 95.89 0.84 0.91
Transcription 96.87 92.4 0.89 0.95
Translation 56.25 100 0.74 0.72
Gluconate utilisation 85.71 100 0.92 0.92
Amino acid biosynthesis 96.89 95.65 0.92 0.95
Fatty acid metabolism 71.6 100 0.82 0.84
Acetylcholine receptor inhibitor 100 100 1.00 1.00
G-protein coupled receptor 95.44 99.11 0.95 0.97
Guanine nucleotide-releasing factor 85.71 100 0.92 0.92
Fibre protein 83.33 100 0.91 0.91
Transmembrane 95.07 99.3 0.95 0.97

MCC: Matthew's correlation coefficient

Table 9: Detailed results of the random forest method with feature selection (RF_CFS)

Protein class Sensitivity Specificity F-measure MCC

Transport 90.27 97.10 0.93 0.88
Transcription 96.63 92.87 0.95 0.90
Translation 62.50 100.00 0.77 0.78
Gluconate utilisation 100.00 100.00 1.00 1.00
Amino acid biosynthesis 95.85 96.30 0.95 0.92
Fatty acid metabolism 77.78 99.73 0.87 0.85
Acetylcholine receptor inhibitor 100.00 100.00 1.00 1.00
G-protein coupled receptor 96.58 97.99 0.97 0.95
Guanine nucleotide-releasing factor 85.71 99.55 0.90 0.89
Fibre protein 66.67 100.00 0.80 0.81
Transmembrane 94.62 98.83 0.96 0.94

MCC: Matthew's correlation coefficient
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Table 10: Comparative performance of the novel feature set and traditional feature set using SVM

Protein class Novel feature set (33 features) Traditional feature set (451 features)

Training 
Accuracy

Test 
accuracy

Sensitivity Specificity AUC Training 
accuracy

Test accuracy Sensitivity Specificity AUC

Transport 75.0273 73.31 36.2 100 0.681 73.2636 72.19 33.6 100 0.668
Transcription 87.9723 88.15 99.3 77.2 0.882 92.5625 97.36 98.3 96.4 0.974
Translation 97.0864 97.34 62.5 100 0.813 98.8642 98.67 81.3 100 0.906
Gluconate 
utilisation

96.8288 96.22 71.4 100 0.857 98.7315 98.11 85.7 100 0.929

Amino acid 
biosynthesis

74.8627 77.83 42.6 100 0.713 73.5272 77.43 41.5 100 0.708

Fatty acid 
metabolism

92.4123 90.22 45.7 100 0.728 90.5586 87.77 32.1 100 0.66

Acetylcholine 
receptor 
inhibitor

98.448 99.06 80 100 0.9 100 99.53 100 99.5 0.998

G-protein 
coupled 
receptor

78.6998 80.87 48.3 100 0.741 76.1838 77.35 38.8 100 0.694

Guanine 
nucleotide-
releasing factor

97.4359 97.92 77.1 99.6 0.883 98.8681 98.75 82.9 100 0.914

Fibre protein 96.789 95.89 0 100 0.5 99.8471 99.31 83.3 100 0.917
Transmembrane 85.2931 85.67 58.3 100 0.791 79.8937 80.58 43.5 100 0.717

AUC: Area under the curve.

Table 11: Comparative performance of the novel feature set and traditional feature set using the random forest

Protein class Novel feature set (33 features) Traditional feature set (451 features)

Training 
accuracy

Test 
accuracy

Sensitivity Specificity AUC Training 
accuracy

Test accuracy Sensitivity Specificity AUC

Transport 91.3688 90.30 86.6 93 0.968 92.9764 93.39 89.9 95.9 0.975
Transcription 90.9659 91.26 93.7 88.8 0.98 94.4252 95.33 96.4 94.3 0.99
Translation 97.679 97.78 68.8 100 0.95 98.0741 97.78 68.8 100 0.996
Gluconate 
utilisation

96.4059 98.11 85.7 100 0.997 97.2516 98.11 85.7 100 0.992

Amino acid 
biosynthesis

93.7676 94.52 91.7 96.3 0.983 94.836 95.46 94.8 95.9 0.991

Fatty acid 
metabolism

95.7242 94.44 72.8 99.2 0.97 96.2926 94 69.1 99.5 0.964

Acetylcholine 
receptor 
inhibitor

99.6896 100 100 100 1 99.8965 100 100 100 1

G-protein 
coupled 
receptor

94.4679 95.92 94.3 96.9 0.991 96.8745 97.18 94.7 98.7 0.993

Guanine 
nucleotide-
releasing factor

96.7429 96.67 62.9 99.3 0.956 98.4985 97.92 74.3 99.8 0.992

Fibre protein 97.4771 95.89 33.3 98.6 0.798 99.2355 99.31 83.3 100 0.998
Transmembrane 93.555 93.52 87.4 96.7 0.978 95.9719 97.53 94.2 99.3 0.995

AUC: Area under the curve.
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vides information on negatively and positively charged
residues in local regions of the sequence. Seven features
that provide local information were selected for classifica-
tion of the guanine nucleotide-releasing factor. For exam-
ple, PNPRDist(61,70) was 1.29 ± 0.42 for the positive
classification samples and 0.72 ± 0.53 for the negative
samples. These findings indicate that alternating posi-
tively and negatively charged residues occur more fre-
quently in the local region from 61% to 70% in the
guanine nucleotide-releasing factor sequence than in the
negative protein samples. Therefore, local information on
the distribution of negatively and positively charged resi-
dues in the interval was informative. Because of these
essential differences, guanine nucleotide-releasing factor
proteins can be predicted with a high level of accuracy.

Figure 3 presents the results of analysis of the raw data for
two features used in classifying transcription proteins.
PNPR for the positive classification samples was 12.04 ±
3.56, while for the negative samples, PNPR was 7.84 ±
3.03. These results indicate that continuous changes from
a positively charged residue to the next negatively charged
residue or vice versa occurred more frequently over the

full sequence of transcription proteins than in the nega-
tive samples.

Figure 4 presents the results of analysis of the raw dataset
for four features, when the proteins were classified using
the random forest method. The mean values of the four
selected features for gluconate utilisation were signifi-
cantly lower than those of the negative samples. For exam-
ple, PNPRDist(11,20) for the gluconate utilisation
sequences was 1.03 ± 0.3, while PNPRDist(11,20) for the
negative samples was 1.3 ± 0.6. These results indicate that
there were fewer continuous changes from a positively
charged residue to the next negatively charged residue or
vice versa in the local region from 11% to 20% of the glu-
conate utilisation sequences than in the negative samples.

There are two ways of using positively charged residues in
classification and prediction of protein function. One
process uses the positively charged residues arginine (R),
histidine (H), and lysine (K) [20], while the other uses
only arginine (R) and lysine (K) [24]. Although defining
two groups of positively charged residues is potentially
useful, we found that the use of arginine, histidine, and

Comparison of nine features used for classification of guanine nucleotide-releasing factor versus negative proteinsFigure 2
Comparison of nine features used for classification of guanine nucleotide-releasing factor versus negative pro-
teins.
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lysine achieved better results than did arginine and lysine.
Specifically, the former (R, H, and K) was useful in classi-
fying gluconate utilisation, fatty acid metabolism, G-pro-
tein coupled receptor, transcription, and transport
proteins, while the latter (R and K) was useful only in clas-
sifying fibre proteins.

Significant findings
The following is a summary of the benchmark compari-
sons and important findings of this study for prediction of
protein function over a broad range of cellular compo-
nents, molecular functions, and biological processes.
Analyses were conducted by SVM and the random forest
method with and without feature selection, based on
many traditional and proposed features extracted from
the sequences.

• Using a larger number of features to predict protein
function does not always result in improved performance.
In terms of accuracy and AUC, SVM with feature selection
has distinct performance advantages with this type of
data, indicating that removal of the many redundant and
irrelevant features by feature selection can improve pre-

diction performance. However, there was no significant
difference in prediction performance for the random for-
est method with and without feature selection.

• The use of a particular classifier does not always result in
improved performance. There is no single method that is
optimal for all conditions because the performance of a
method depends on the type of data involved, the size of
the dataset, the number of features involved, the type of
extracted features, and whether feature selection is used,
among other things. Therefore, selection of the optimal
classifier for a given dataset depends on an understanding
of machine-learning algorithms, feature selection proc-
esses, and biological background information relevant to
the dataset.

• Features useful for predicting a specific protein function
in a given dataset are not always useful for predicting
another protein function – discriminative and informa-
tive features differ according to protein function. There-
fore, identifying discriminative features applicable to a
broad range of protein classes is difficult.

Comparison of three features used for classification of transcription versus negative proteinsFigure 3
Comparison of three features used for classification of transcription versus negative proteins.
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• Although many methods have recently been proposed
for predicting protein function, most methods are not
suitable for function prediction under high-throughput
conditions, because they require information on protein
structure. Currently, there is much more data available on
protein sequences than on protein structures; thus, the
methods developed in this study focused on predicting
protein function based solely on features extracted from
the protein sequence. This reduces the effort required to
extract useful features, as the predictive or experimental
work required to acquire structural information is both
costly and time-consuming. In the experiments under-
taken in this study, we found that sequence-based classifi-
ers can also generate very good results.

• Local information regarding the protein sequence is
meaningful in predicting protein function; several exam-
ples have been presented to demonstrate its usefulness.
Although identifying local information for a sequence is
difficult and the information does not always correspond
to striking difference in protein function, unique features
extracted from specific positions or local regions can be
predicted with a high level of accuracy.

• The numbers or percentages of positively and negatively
charged residues are some of the most important and
well-known features used for function prediction. PPR
and NNR were extracted from sequences based on the
presence of negatively and positively charged residues.
These novel features include information on the existence
of negatively and positively charged residues as well as the
manner in which the two charged residue types co-exist in
a sequence. PPR and NNR were found to be selected more
frequently for function prediction than were the number
of negatively and positively charged residues. Thus, these
features appear to be highly correlated with protein class
and have a low inter-correlation with each other.

The above results indicate that it is possible to generate
accurate predictions for a broad range of protein functions
without the use of sequence or structural similarities. Fea-
ture selection improves predictions for a variety of protein
functions, but does not always ensure improved perform-
ance, depending on the dataset and the method used.
Finally, local information for protein sequences is mean-
ingful for predicting protein function, and a feature set
with good performance and dimensional reduction was

Comparison of local information used for classification of gluconate utilisation versus negative proteinsFigure 4
Comparison of local information used for classification of gluconate utilisation versus negative proteins.
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identified, as many features initially included in this study
were removed by CFS.

Conclusion
Many previous studies have attempted to biologically and
computationally determine meaningful and accurate fea-
tures that assist in predicting protein function. Features
that show an obvious propensity for predicting many dif-
ferent protein functions have not yet been reported, and
this provides a motivation for discovering the relationship
between features and protein function.

This paper described a highly accurate prediction method
capable of identifying protein function by using features
extracted solely from protein sequences, irrespective of
sequence and structural similarities. In this study, the PPR,
NNR, PNPR, and Dist(x, y) features were introduced. In pre-
dicting the functions of 11 different proteins, a high per-
formance (94.23–100%) was achieved and predictive
features for several protein classes were effectively identi-
fied.

The results presented here suggest that our new features,
developed in the course of this study, will be useful in pre-
dicting many protein class functions. We believe that pre-
diction performance can be improved by combining
sequence-based features and additional features, such as
predicted secondary structure, surface area, and subcellu-
lar location. Accordingly, further insight into feature anal-
ysis and biological understanding is needed. In future
studies, we will apply this method to predict the functions
of proteins that have not been identified by sequence
alignment.
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