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Abstract
Background: Telomerase confers cellular immortality by elongating telomeres, thereby circumventing the Hayflick
limit. Extended-life-span cells have been generated by transfection with the human telomerase reverse transcriptase
(hTERT) gene. hTERT transfected cell lines may be of outstanding interest to monitor the effect of drugs targeting the
telomerase activity. The incidence of hTERT gene transfection at the proteome level is a prerequisite to that purpose.
The effect of the transfection has been studied on the proteome of human fibroblast (WI38). Cytosolic and nuclear
fractions of WI38 cells, empty vector transfected WI38 (WI38-HPV) and hTERT WI38 cells were submitted to a 2D-
DIGE (Two-Dimensional Differential In-Gel Electrophoresis) analysis. Only spots that had a similar abundance in WI38
and WI38-HPV, but were differentially expressed in WI38 hTERT were selected for MS identification. This method
directly points to the proteins linked with the hTERT expression. Number of false positive differentially expressed
proteins has been excluded by using control WI38-HPV cells. The proteome alteration induced by hTERT WI38
transfection should be taken into account in subsequent use of the cell line for anti-telomerase drugs evaluation.

Results: 2D-DIGE experiment shows that 57 spots out of 2246 are significantly differentially expressed in the cytosolic
fraction due to hTERT transfection, and 38 were confidently identified. In the nuclear fraction, 44 spots out of 2172 were
selected in the differential proteome analysis, and 14 were identified. The results show that, in addition to elongating
telomeres, hTERT gene transfection has other physiological roles, among which an enhanced ER capacity and a potent
cell protection against apoptosis.

Conclusion: We show that the methodology reduces the complexity of the proteome analysis and highlights proteins
implicated in other processes than telomere elongation. hTERT induced proteome changes suggest that telomerase
expression enhances natural cell repair mechanisms and stress resistance probably required for long term resistance of
immortalized cells. Thus, hTERT transfected cells can not be only consider as an immortal equivalent to parental cells
but also as cells which are over-resistant to stresses. These findings are the prerequisite for any larger proteomics aiming
to evaluate anti-telomerase drugs proteome alteration and thus therapeutics induced cell reactions.
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Background
Telomeres are specialized functional DNA-protein com-
plexes that cap the end of linear chromosomes. Their role
is to protect chromosomes from degradation, recombina-
tion, or fusion, and to prevent the chromosome ends from
being detected as strand breaks. At each cell division, tel-
omeres shorten until they reach a critical size that drives
eukaryotic cells into replicative senescence. Telomere
length therefore acts as a biological life clock. Telomerase,
a ribonucleoprotein complex, is involved in telomere
length maintenance in eukaryotic cells by adding telom-
eric repeats to the 3' end of chromosomes. Telomerase
activity is downregulated in most human cells during
embryogenesis, thereby limiting their proliferative capac-
ity. However, the reactivation of telomerase activity is
observed in 90% of all human tumor cells, making this
enzyme an attractive target for selective cancer therapy.

Reconstitution of telomerase activity by ectopic expres-
sion of the catalytic telomerase subunit (hTERT) cDNA
stabilizes the telomere length of fibroblasts and other cell
types that therefore acquire immortality [1]. Such hTERT-
transfected cells have been proposed as immortal versions
of normal human cells model with the advantage of indef-
inite proliferation. This strategy is applied for biochemical
and physiological studies of normal cell growth, differen-
tiation, genetic manipulation, etc [1-4]. More recently,
experiments using transplanted telomerase-immortalized
cells have been conducted in immunodeficient mice [5].
Adenocortical hTERT immortalized cells were able to
replace cells with deficient functions. However such cell-
based therapies raise important interrogations about
medium and long term incidence of hTERT-immortalized
cell autotransplantation cells. Indeed, several studies have
evidenced that hTERT has other physiological roles
beyond maintaining telomere such as potent incidence on
malignant transformation of human fibroblasts by a tel-
omere length-independent mechanisms [6-8]. Further-
more, the key role of telomerase in cancer cell
immortalization led to the development of therapeutic
strategies based on telomerase inhibition. A detailed char-
acterization of hTERT-related transfection processes is
therefore of outstanding interest to monitor anti-telomer-
ase drug therapy.

We have studied here the sub-proteome modifications
induced by hTERT transfection in the normal human
fibroblast WI38 cell line. Cytoplasmic and nuclear frac-
tions were analyzed by 2D DIGE. Comparison with con-
trols, WI38 transfected with the empty vector (HPV) or
parental untransfected WI38 cells has revealed the altered
expression of proteins involved in apoptosis, cell cycle
and endoplasmic reticulum homeostasis. The subfrac-
tionation method used allows telomerase detection by
western blots, TRAP assay (Telomere repeat amplification

protocol) experiment and reproducible extraction and
isolation of the cytosolic and nuclear sub-proteomes, the
latter one being enriched in low abundant proteins such
as transcription factors and telomeric proteins. The inter-
est of this work is to characterize the effect of hTERT
expression at the proteome level of WI 38 cells for further
investigating the effect of anti-telomerase drugs therapies
in an integrated proteomic study.

Results and Discussion
To characterize the protein expression changes resulting
from hTERT transfection, we performed a differential pro-
teomic analysis in order to compare wild type WI 38 cells
(WI38), hTERT transfected WI 38 cells (WI38-hTERT) and
control HPV transfected WI 38 cells (WI38-HPV) har-
vested at the same number of population doublings
(PDL) after transfection and FACS sorting (PDL = 10). The
use of this relatively low passage number in vitro main-
tains in hTERT transfected cells normal cell characters,
such as the capacity of contact inhibition and the karyo-
type [9]. It has been shown that hTERT expression protects
the WI38 transfected cells from stress-induced apoptosis
and necrosis [10]. Prolonged culturing of WI38-hTERT
cells leads to a loss of density-dependent growth inhibi-
tion and to an onset of contact-induced, p53 dependent
cell death [11]. Our cell lines presented density-depend-
ent growth inhibition. For the proteomics analysis, our
three cell lines were maintained at 90% confluence, and
in exponential growth phase. In these conditions, the
population doubling levels were similar.

2D DIGE was performed on both nuclear and cytosolic
cell fractions. The subfractionation method used relies on
a complementary and very different 2D gel images (Figure
1) which is necessary for low abundant nuclear proteins
differential analysis. Nuclear fraction corresponds to
5.89% ± 0.41 (mean value over 6 independent experi-
ments) of the total protein content. Protein spots that
showed either an increase or a decrease in intensity supe-
rior to 30%, together with a statistically significant Stu-
dent's t-test (p < 0.05) were considered as being
differentially expressed. Interestingly, numbers (Table 1)
of differentially expressed proteins were found between
parental cells and control HPV WI 38 cells. These modifi-
cations are thus a consequence of the general transfection
and are not due to hTERT gene transfection. In this study
only proteins which are differentially expressed between
parental cells and hTERT cells and have in addition the
same expression in parental cell and control HPV WI 38
cells were selected for the study and submitted to mass
spectrometry based identification. In the cytosolic frac-
tion, 57 spots out of 2246 are significantly differentially
expressed (Table 1), and 38 were confidently identified
(Table 2). In the nuclear fraction, 44 spots out of 2172
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were selected in the differential proteome analysis (Table
1), and 14 were identified (Table 3).

Functional protein association network of the proteins 
differentially expressed due to hTERT transfection [12]
Based on STRING protein-protein interactions predictions
an association network of the proteins which have their
expression modified due to hTERT transfection was cre-
ated (Figure 2). The Table 4 describes the 15 proteins that
were automatically selected by STRING to enlarge the pro-
tein association network of the Figure 2. This bioinformat-
ics analysis evidenced protein groups which have their
expression modified due to hTERT transfection in which
proteins involved in ubiquitin-proteasome protein degra-
dation pathway, nuclear-cytosol transport, endoplasmic
reticulum functions, pre-mRNAs processing and cell sev-
eral chaperone functions. This network will be further
compared to those of anti telomerase drugs experiments.

Up regulation of the heat shock protein 90-alpha
The heat shock protein 90-alpha (hsp90α) is upregulated
by a factor 1.42 in the nuclear fraction of hTERT WI38
cells. Hsp90α exerts its chaperon function to ensure the
correct conformation, activity, intracellular localization
and proteolytic turnover of a range of proteins that are
involved in cell growth, differentiation and survival [13].
More specifically, hsp90α interacts with telomerase com-
plex and occupy a central place in our protein association
network (Figure 2). Hsp90α is involved in allowing RNA
template of the telomerase (hTR) to bind hTERT and also
in fine tuning and stabilizing the structure of the telomer-
ase complex [14,15]. Its central role in the telomerase
activity modulation and in multiple signaling pathways
and biological processes makes it a relevant target for anti
cancer therapy. Number of study are currently evaluating
clinical activity of hsp90 inhibitors in cancer therapeutics
[16-22]. Our DIGE study links the overexpression of the
hsp90α with the ectopic expression of hTERT and suggests
a key role of this chaperone in the subsequent cell adapta-
tion to immortalization. In addition, Hiyama and cow-
orkers have shown in a differential gene expression
profiles study that the hsp90α is overexpressed in tumor
with high telomerase activity comparing tumor with low
telomerase activity [23]. Theses findings emphasize the

interest of anti hsp90 targeting drugs therapy and shows
the interest of such proteomics methodology for potential
biomarkers discovery and further drugs candidates charac-
terization and preclinical validation.

Down-regulation of apoptotic effectors Galectin-1 and 
Annexin 5
Galectin-1 (Gal-1) is downregulated by a factor of 2.1 in
the nuclear proteome of hTERT-transfected cells. Gal-1 is
a highly conserved protein with a carbohydrate-recogni-
tion domain that binds beta-galactoside. Recently Gal-1
was shown to be implicated in cell growth, apoptosis and
cell differentiation and survival of effector T cells [24-27].
Exogenously added recombinant Gal-1 induces apoptosis
by the mitochondrial and death receptor pathways of MA-
10 tumor Leydig cells. In contrast, low concentrations of
Gal-1 significantly promote cell proliferation, without
inducing cell death [26]. Walzel and al. have shown that
Gal-1 triggers through binding to N-linked glycans a Ca2+-

sensitive apoptotic pathway [28].

Annexin 5 is downregulated by a factor of 2.64 in the
cytosolic proteome of hTERT-transfected cells. Annexins
are abundant Ca2+- dependant phospholipids-binding
proteins. Depletion of endogenous annexin 5 with siRNA
inhibits delta protein kinase C functions in which cellular
processes such as growth, differentiation and apoptosis
[29,30]. In addition Hawkins and co-workers have proven
that annexin 5 lack expression results in reduced suscepti-
bility to a range of apoptotic stimuli, and that annexin 5
(-/-) cells are more resistant to apoptosis [31].

The downregulation of these two proteins in hTERT-trans-
fected cells suggests that telomerase expression, in addi-
tion to its immortalization effect, induces a protection
against apoptosis, compared to WI 38 cells. In agreement,
modulation of apoptosis have been reported [32-34].

Upregulation of Cajal bodies associated factors
Cleavage stimulator factor 50 kDa subunit (CstF-50) is
upregulated by a factor of 1.57 (T-test: 1.5E-03), and
cleavage and polyadenylation specificity factor 5 (CPSF-
25) by a factor of 1.35 (T-test: 1.6E-02) in the nuclear pro-
teome of hTERT transfected cells. CstF-50 is a subunit of

Table 1: 2D DIGE spots selection.

Nuclear fraction Cytosolic fraction

Total number of spots differentially expressed in WI38/WI38-hTERT 190 210
Number of spots differentially expressed due to transfection (WI38/WI38-HPV) 146 153
By difference, number of spots differentially expressed due only to hTERT overexpression (number of 
identified spots are in parentheses)

44 (14) 57 (38)

Number of spots differentially expressed in 2D-DIGE experiment (Student's t-test p < 0.05 and increase or decrease intensity superior at 30%). 
Selection based on spots differentially expressed in WI38/hTERT WI 38, but similarly expressed in WI38 and control WI38-HPV.
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Table 2: Cytosolic differentially expressed proteins identification and regulation

hTERTt-WI38/WI38 hTERT-WI38/HPV-WI38 Reference

Swiss-Prot AC Gene name, 
STRING protein 
association 
network legend

Protein name Function T-test Regulation T-test Regulation

[O43852] CALR Calumenin precursor Ca(2+)-binding, secretory 
pathway

1.0E-03 2.27 1.6E-02 1.5 [40]

[Q15293] RCN1 Reticulocalbin-1 precursor Ca(2+)-binding, secretory 
pathway

1.3E-04 2.11 4.2E-04 1.85 [40]

[P14625] HSP90B1 Endoplasmin precursor 
(GRP94)

ER chaperone, Ca(2+) 
binding, anti-apoptosis

1.4E-05 2.1 1.6E-03 1.26 [47, 59]

[Q14697] GANAB Neutral alpha-glucosidase 
AB precursor

Protein O-glucosyl 
hydrolase

4.9E-08 2.06 5.5E-06 1.42

[O95302] FKBP9L FK506-binding protein 9 
precursor (FKBP9)

Peptidyp propyl isomerase 
(PPI), accelerate protein 
folding

9.9E-05 2.04 3.9E-03 1.41 [52]

[Q9Y4L1] HYOU1 150 kDa oxygen-regulated 
protein precursor 
(ORP150)

ER chaperone, exchange 
factor for GRP78

1.2E-03 1.98 2.3E-03 1.8 [47, 60]

[Q9BS26] TXNDC4 Thioredoxin domain-
containing protein 4 
precursor (ERp44)

Control of oxidating 
protein folding, ERO1L 
partner

3.5E-06 1.89 7.2E-05 1.57 [61, 62]

[O43852] CALU Calumenin precursor Ca(2+)-binding, secretory 
pathway

1.80E-05 1.80 3.7E-03 1.35 [40]

[Q15293] RCN1 Reticulocalbin-1 precursor Ca(2+)-binding, secretory 
pathway

2.5E-02 1.78 6.2E-02 1.51 [40]

[O75131] CPNE3 Copine-3 Ca(2+)-dependent 
phospholipid-binding 
proteins

7.4E-04 1.73 1.2E-03 1.59 [63, 64]

[Q8NBS9] TXNDC5 Thioredoxin domain-
containing protein 5 
precursor (Erp46)

Thiol oxydoreductase 3.2E-03 1.73 4.9E-03 1.65 [62, 65]

[P11021] HSPA5 78 kDa glucose-regulated 
protein precursor (GRP78)

ER chaperone, Ca(2+)-
binding, ER stress sensor, 
anti-apoptosis

1.5E-02 1.65 7.4E-03 1.57 [47, 66]

[P13674] P4HA1 Prolyl 4-hydroxylase alpha-
1 subunit precursor

Hypoxia-inducible collagen 
synthesis

2.0E-08 1.65 1.3E-06 1.77 [67]

[O15460] P4HA2 Prolyl 4-hydroxylase alpha-
2 subunit precursor

Hypoxia-inducible collagen 
synthesis

2.8E-04 1.64 1.5E-03 1.43 [67]

[P07237] P4HB Protein disulfide-isomerase 
precursor

Rearrangement of -S-S-
bonds in proteins

2.0E-06 1.64 2.1E-04 1.28 [68]

[Q9H2D6] TRIOBP TRIO and F-actin-binding 
protein

May regulate actin 
cytoskeletal organization

8.0E-05 1.59 4.9E-03 1.35

[P30101] GRP58 Protein disulfide-isomerase 
A3 precursor (PDI-A3)

Rearrangement of -S-S-
bonds in proteins

8.6E-07 1.57 2.8E-06 1.48 [68]

[Q96HE7] ERO1L ERO1-like protein alpha 
precursor (ERO1L)

Protein disulfide isomerases 
oxydoreductase

2.7E-02 1.54 4.7E-02 1.44 [61, 69]

[P27797] CALR Calreticulin precursor ER chaperone, Ca(2+)-
binding, glycoprotein 
folding

2.9E-02 1.46 7.8E-03 1.61 [47]

[Q15084] PDIA6 Protein disulfide-isomerase 
A6 precursor (PDI-A6)

Rearrangement of -S-S-
bonds in proteins

8.8E-05 1.45 1.1E-04 1.31 [68]

[Q99439] CNN2 Calponin-2 Ca(2+)-binding, actin-
binding RNA helicase which

2.1E-04 1.33 2.7E-03 1.25 [70, 71]

[P60842] EIF4A1 Eukaryotic initiation factor 
4A-I

mediates binding of mRNA 
to the ribosome

6.6E-05 1.33 8.6E-05 1.48

[P30101] GRP58 Protein disulfide-isomerase 
A3 precursor (PDI-A3)

Rearrangement of -S-S-
bonds in proteins

3.9E-03 1.29 2.0E-03 1.44 [68]

[P27797] CALR Calreticulin precursor ER chaperone, Ca(2+)-
binding, glycoprotein 
folding

0.18 1.26 2.6E-02 1.68 [47]

[P51665] PSMD7 26S proteasome non-
ATPase regulatory subunit 
7

Regulation of ubiquitinated 
proteins degradation

2.2E-02 0.76 1.4E-02 0.71

[P04406] HSD35 Glyceraldehyde-3-
phosphate dehydrogenase

Glycolytic pathway 1.1E-02 0.75 7.7E-04 0.70

[Q99426] CKAP1 Tubulin-specific chaperone 
B

Chaperone, tubulin 
organisation

1.3E-03 0.75 8.8E-04 0.72

[P04406] HSD35 Glyceraldehyde-3-
phosphate dehydrogenase

Glycolytic pathway 4.9E-03 0.74 9.4E-03 0.76

[P09211] GSTP1 Glutathione S-transferase P Oxidative stress 6.1E-03 0.72 4.7E-02 0.81
[P04075] ALDOA Fructose-bisphosphate 

aldolase A
Glycolytic pathway 6.4E-03 0.71 7.2E-02 0.85

[P04075] ALDOA Fructose-bisphosphate 
aldolase A

Glycolytic pathway 8.2E-04 0.69 4.7E-02 0.75

[P04406] HSD35 Glyceraldehyde-3-
phosphate dehydrogenase

Glycolytic pathway 1.2E-03 0.61 1.3E-03 0.69
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the heterotrimer CstF. CstF and CPSF-25 are required for
polyadenylation and 3'-end cleavage of mammalian pre-
mRNAs. Schul and co-workers have shown that "cleavage
bodies" (compact spherical fibrous structures containing
CstF et CPSF factors) are intimately associated with Cajal
bodies (CBs) [35]. hTERT and the telomerase RNA com-
ponent, hTR, are also found in CBs. Ectopic expression of
hTERT results in accumulation of hTR in CBs in primary
fibroblasts or smooth muscle cells, but not in normal cells
or in telomerase-negative (ALT) tumor cells [36]. It has

been proposed that CBs could act as storage sites and
deliver components of the telomerase complex when
needed [37]. hTR localization in CBs is an important reg-
ulatory mechanism for telomere length homeostasis in
human cells: mutant hTR failing to accumulate in CBs
results in a functional deficiency and a decreasing associ-
ation of telomerase with telomere [38]. The RNA compo-
nent of human telomerase (hTR) includes H/ACA and
CR7 domains required for 3' end processing, localization
and accumulation. 3' end processing is a prerequisite for

Table 3: Nuclear differentially expressed proteins identification and regulation

hTERTt-WI38/WI38 hTERT-WI38/HPV-WI38

Swiss-Prot AC Gene name, 
STRING protein 
association network 
legend

Protein name Function T-test Regulation T-test Regulation

[P31943] HNRPH1 Heterogeneous nuclear 
ribonucleoprotein H

Pre-mRNAs processing 4.4E-03 1.73 3.0E-02 1.58

[P08235] NR3C2 Mineralocorticoid receptor Binds to mineralocorticoid response 
elements (MRE) and transactivates 
target genes

6.1E-03 1.65 1.6E-02 1.53

[O14579] COPE Coatomer subunit epsilon Implicated in vesicles trafficking 4.2E-02 1.62 0.12 1.33
[Q05048] CSTF1 Cleavage stimulation factor 

50 kDa subunit
Polyadenylation and 3'-end cleavage of 
mammalian pre-mRNAs

1.5E-03 1.57 5.6E-03 1.64

[P07900] HSPCA Heat shock protein HSP 90-
alpha

Chaperone, 680kDa human 
telomerase complex partner [72]

1.5E-02 1.42 2.2E-04 2.05

[P62826] ARA24 GTP-binding nuclear 
protein Ran

nucleocytoplasmic transport 2.0E-02 1.37 6.7E-03 1.24

[O43809] ENSP0000030 0291 Cleavage and 
polyadenylation specificity 
factor 5

Polyadenylation and 3'-end cleavage of 
mammalian pre-mRNAs

1.6E-02 1.35 - 1.35

[Q13838] ATP6V1G2 splicesome RNA helicase 
BAT1

Splice factor, required for mRNA 
export

6.3E-03 1.34 1.7E-03 1.5

[P25788] PSMA3 Proteasome subunit alpha 
type 3

Protein degradation 5.6E-03 0.68 4.7E-02 0.75

[P28072] PSMB6 Proteasome subunit beta 
type 6 precursor

Protein degradation 3.8E-05 0.65 3.0E-04 0.66

[P08865] RPSA 40S ribosomal protein SA Protein synthesis 1.3E-04 0.58 5.4E-04 0.60
[P60842] EIF4A1 Eukaryotic initiation factor 

4A-I
RNA helicase which mediates binding 
of mRNA to the ribosome

3.1E-02 0.54 1.2E-01 0.52

[P09382] LGALS1 Galectin-1 Cell growth, apoptosis and cell 
differentiation

8.8E-07 0.50 1.2E-06 0.51

[Q12906] ILF3 Interleukin enhancer-
binding factor 3

Translation inhibitory protein of acid 
beta-glucosidase and other mRNAs, 
IL2 transcription regulator, promote 
the formation of stable DNA-
dependent protein kinase holoenzyme 
complexes on DNA

1.1E-05 0.47 9.5E-04 0.66

List of the proteins differentially expressed due to hTERT transfection in the nuclear fraction of human WI38 cells. Listed by decreasing regulation.

[P04792] HSPB1 Heat-shock protein beta-1 
(HSP27)

Chaperone, actin 
organization

3.8E-03 0.61 3.4E-03 0.65

[P05120] SERPINB2 Plasminogen activator 
inhibitor 2 precursor

Plasminogen activator 
inhibitor

3.3E-04 0.56 1.3E-03 0.59

[P17987] TCP1 T-complex protein 1 
subunit alpha

Chaperone, protein folding, 
actin and tubulin folding

1.7E-02 0.56 3.7E-03 0.67

[P08758] ANXA5 Annexin A5 Ca(2+)-dependant 
phospholipids-binding, 
apoptosis regulation

2.1E-04 0.39 2.6E-04 0.40

[P07737] PFN1 Profilin-1 Intranuclear movements, 
assembly of transcription 
complexes

3.3E-04 0.38 1.0E-02 0.33

[P07737] PFN1 Profilin-1 Intranuclear movements, 
assembly of transcription 
complexes

3.2E-02 0.37 2.7E-02 0.4

List of the proteins differentially expressed due to hTERT transfection in the cytosolic fraction of human WI38 cells. Listed by decreasing regulation.

Table 2: Cytosolic differentially expressed proteins identification and regulation (Continued)
Page 5 of 13
(page number not for citation purposes)



Proteome Science 2008, 6:12 http://www.proteomesci.com/content/6/1/12
translocation of hTR to CBs [38]. A probable role of CstF-
50 and CPSF-25 in hTR maturation may be an important
regulation process and requires further investigations.

Profilin 1 is a known component of Cajal bodies sup-
posed involved in both ATP-dependant intranuclear
movements and in the assembly of transcription com-
plexes [39]. Our results show that this protein is downreg-
ulated in cytosol hTERT transfected cells. Modulation of

this protein may also implicate CBs functions in hTERT-
transfected cells.

Enhanced protective ER functions in hTERT transfected 
cells
22 out of the 38 proteins identified in the cytosolic frac-
tion are involved in endoplasmic reticulum functions and
are up-regulated in the hTERT transfected cells. Our results
are consistent with this recent report and underline the

Nuclear and cytosolic 2D DIGE gelsFigure 1
Nuclear and cytosolic 2D DIGE gels. Two dimensional gel electrophoresis images of nuclear (A, B) and cytosolic fractions 
(C, D) of WI38 cells. The subfractionation method used allows reproducible extraction and isolation of the nuclear and 
cytosolic sub-proteomes.
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implication of the CERC protein family as an important
signaling pathway in hTERT transfected cells. Reticulocal-
bin and calumenin belong to the CREC (Cab45, reticulo-
calbin, ERC-45, calumenin) proteins, which constitute a
family of EF-hand (helix-turn-helix structural motif) cal-
cium binding proteins localized to the secretory pathway

[40]. It has been proposed that CREC family is essential
for cell survival because homozygous deletion of a region
containing the reticulocalbin gene is lethal [41]. Several
reports described their important role in pathophysiolog-
ical processes especially in connection with malignant
transformation [42-44]. Another recent study indicates

Protein association network of the proteins differentially expressed due to hTERT transfectionFigure 2
Protein association network of the proteins differentially expressed due to hTERT transfection. Protein-protein 
interactions predictions from the identified proteins which have their expression modified due to hTERT transfection. Based 
on STRING [12]. Network Display – Nodes are either coloured (differentially expressed proteins in this study except TERT 
that was manually introduced) or white (nodes of a higher iteration/depth). Additional white nodes are automatically generated 
by STRING to maximize existing interactions. Stronger associations are represented by thicker lines. Parameters used to cre-
ate the protein association network: medium confidence and 15 additional (white) nodes. Protein descriptions of the coloured 
nodes are described in Table 2 and 3 those of white nodes in Table 4.
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that calumenin may have an autocrine or a paracrine
effect on the cells in its vicinity modulating cell cycle and
organization of the actin cytoskeleton [45]. Additionally,
calumenin and reticunocalbin were also differentially
expressed in a study comparing early passage, senescent,
and hTERT-transfected endothelial cells [46]. In this
study, mRNA level of these proteins were upregulated in
hTERT transfected cells compared to early passage subcon-
fluent cells.

ORP150, GRP78, calreticulin, PDIs, ERp44, ERp46,
FKBP9 are implicated in essential ER functions and Ca2+

homeostasis [47]. Interestingly, gene knockout experi-
ments have proven that ER chaperon function is required
for early mammalian development. Depletion of GRP78
leads to lethality in 3.5-day-old embryos (E3.5) due to
failure of embryo peri-implantation [48]. This study sug-
gests that physiological ER stress may exist in early devel-
opment due to increased activity of cell proliferation and
protein secretion. Calreticulin deficiency is also lethal in
mouse embryos at E14.5, resulting from a lesion in car-
diac development [49]. Interestingly GRP78 and calreticu-
lin are downregulated after birth in the healthy mature
heart [50]. ER chaperones overexpression are also pro-
posed to promote cancer and tumor immunity [47]. It is
interesting to note that telomerase is generally active in
early embryonic stage and in 90% of cancers like these
chaperones.

Our results indicate that overexpression of ER chaperones
is a consequence of telomerase reactivation. The fact that
these proteins are selectively upregulated in hTERT WI38
cells compared to WI38 and WI38-HPV control cells dem-
onstrates that hTERT induces an important modulation of
the ER functions. The ER is one of the most important
folding compartments within the cell, as well as an intra-
cellular Ca2+ storage organelle and it contains a number of
Ca2+ regulated molecular chaperones responsible for the
proper folding of glycosylated as well as non-glycosylated
proteins. ER is also capable, through Ca2+ homeostasis
modulation, to determine cellular sensitivity to ER stress
and apoptosis [51]. We propose that upregulations of ER
chaperones in hTERT transfected cells are responsible of a
protective cell effect essential for the proliferation of
hTERT immortalized cells. This protective effect is proba-
bly mediated by upregulation of GRP78 and calreticulin
chaperones. In addition, FKBP9 may play an important
role in the control of the timing of this biological process
due to the recent discovery of its molecular timer function
[52]. We propose also that intracellular and potent inter-
cellular anti-apoptotic signaling are mediated by proteins
belonging to the CREC family in hTERT positive cells
trough a Ca2+ signaling modulation. Such proteome mod-
ulation makes evidence that telomerase reactivation, in
addition of elongating telomere, has several indirect
effects that augment ER capacity of protein folding and
degradation [53-55].

Table 4: Protein descriptions of the white nodes of the Protein association network (Figure 2)

Gene name, STRING protein association 
network legend

Protein name

ACTA1 Actin, alpha skeletal muscle (Alpha-actin-1)
BARD1 BRCA1-associated RING domain protein 1 (BARD-1)
CDC37 Hsp90 co-chaperone Cdc37 (Hsp90 chaperone protein kinase-targeting subunit) 

(p50Cdc37)
CHC1 Regulator of chromosome condensation (Cell cycle regulatory protein)
EIF4G1 Eukaryotic translation initiation factor 4 gamma 1 (eIF-4-gamma 1) (eIF-4G1) (eIF-4G 1) 

(p220)
ILF2 Interleukin enhancer-binding factor 2 (Nuclear factor of activated T-cells 45 kDa)
KPNB1 Importin beta-1 subunit (Karyopherin beta-1 subunit) (Nuclear factor P97) (Importin 90)
MAPKAPK2 MAP kinase-activated protein kinase 2 (EC 2.7.1.-) (MAPK-activated protein kinase 2) 

(MAPKAP kinase 2) (MAPKAPK-2)
MAPKAPK5 MAP kinase-activated protein kinase 5 (EC 2.7.1.37) (MAPK-activated protein kinase 5) 

(MAPKAP kinase 5) (p38-regulated/activated protein kinase)
NR3C1 Glucocorticoid receptor (GR)
NUTF2 Nuclear transport factor 2 (NTF-2) (Placental protein 15) (PP15)
PLAU Urokinase-type plasminogen activator precursor (EC 3.4.21.73) (uPA) (U-plasminogen 

activator) [Contains: Urokinase-type plasminogen activator long chain A; Urokinase-type 
plasminogen activator short chain A; Urokinase-type plasminogen activator chain B]

RANBP1 Ran-specific GTPase-activating protein (Ran binding protein 1) (RanBP1)
RANBP2 Ran-binding protein 2 (RanBP2) (Nuclear pore complex protein Nup358) (Nucleoporin 

Nup358) (358 kDa nucleoporin) (P270)
RANGAP1 Ran GTPase-activating protein 1
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Conclusion
We show that the methodology reduces the complexity of
the proteome analysis and highlights proteins implicated
in other processes than telomere elongation. hTERT trans-
fection enhances natural ER capacity and modulates Ca2+

cell signaling pathways potentially resulting in overpro-
tection mechanisms against endogeneous and exogene-
ous disorder. This hypothesis is in accordance with the
identified down-regulation of apoptotic effectors Galec-
tin-1 and Annexin 5. Other effects like an enhanced DNA
excision repair pathway have also been reported in cell
with long telomere [56]. Altogether, these observations
suggest that telomerase expression enhances natural cell
repair mechanisms and stress resistance probably
required for long term resistance of immortalized cells.
Therefore, hTERT transfected cells cannot be only consid-
ered as an immortal equivalent to parental cells but also
as cells which are over-resistant to stresses. The introduc-
tion of hTERT gene in WI38 cells modulates the chaper-
one hsp90α expression which seems to be, by its central
position in the protein association network (Figure 2), an
important regulator of subsequent cell adaptation mecha-
nism to immortalization. This finding increases the inter-
est of current anti cancer studies based on hsp90
inhibition. In addition to these observations, orthogonal
analysis of our results with several cancerous cells pro-
teomic studies reveals that some of the current high-
lighted proteins such as hsp90α, GRP78 and calreticulin
are also implicated in oncogenese and cell resistance [53-
55]. Finally the model "parental WI38/hTERT WI38/HPV
WI38" characterization (Table 2, 3) is the prerequisite for
any larger proteomics aiming to evaluate anti-telomerase
drugs proteome alteration and thus therapeutics induced
cell reactions.

Methods
Cell culture and infection of WI38 cells
hTERT WI38, HPV WI38 and parental WI38 cells (human
embryonic lung fibroblasts) were grown in Eagle's mini-
mal essential medium with Glutamax (Invitrogen), sup-
plemented with 10% fetal calf serum and penicillin-
streptomycin 1% (Gibco).

Lentiviral supernatants containing hTERT or control HPV
vector were a generous gift from Dr. Annelise Bennaceur-
Griscelli (Institut Gustave Roussy, Villejuif, France).
Briefly, WI 38 cells at 1.5 × 105 cells/mL were infected at a
multiplicity of infection equal to 50 in the presence of 4
μg/mL Polybrene in complete culture medium. Enhanced
green fluorescent protein-positive cells were sorted 5 days
later by flow cytometry according to a high or low inten-
sity of fluorescence. Populations that expressed a high
intensity of fluorescence were seeded [57].

Non denaturing subfractionation method
The non denaturing method of extraction and fractiona-
tion is based on the method of Gorski and co-workers
[58] and has been adapted for WI38 cells. A cytosolic frac-
tion and a nuclear histone-depleted proteins fraction were
obtained. We verified the presence or not of telomerase
activity by Western blots and TRAP (telomeric repeat
amplification protocol) assay on each fraction. Then, a 2D
LC-MS/MS analysis was performed and allowed the iden-
tification of more than 100 proteins per fraction. The two
fractions shared a few number of common structural pro-
teins and the nuclear fraction was enriched in low abun-
dant proteins such as transcription factors and telomeric
proteins (results not shown). For each experiment, 25 T
175 flasks 90% confluent are rinsed three times with PBS,
then collected, using a scraper in a cold room at 4°C. The
collected cells are centrifuged 5 minutes at 400 g and
recovered. 10 mL of buffer 1 (Hepes-KOH 10 mM, pH 7.6;
KCl 10 mM; Spermine/HCl 0.15 mM; Spermidine 0.5
mM; DTT 0.5 mM) (10 times a volume equivalent to the
fresh weight) is added to the cell pellet, homogenized and
incubated 10 minutes on ice. The tube is then centrifuged
5 minutes at 800 g and the cells are recovered. One vol-
ume equivalent to the fresh weight of buffer 1 is added.
The solution is homogenized with 10 strokes with a
motorized potter Elvehjem homogenizer (Teflon/glass) at
4000 rpm and the disruption of the cell membrane is con-
trolled by Trypan Blue staining of nuclei with an inverted
phase contrast microscope. 10% in volume of buffer 2
(Hepes-KOH 10 mM, pH 7.6; KCl 1 M; Spermine/HCl
0.15 mM; Spermidine 0.5 mM; DTT 0.5 mM) is added to
restore isotonicity of the solution, the solution is homog-
enized with 10 strokes at 4000 rpm and centrifuged 10
minutes at 1100 g. The pellet which contains nuclei is
recovered, the supernatant is collected and centrifuged 30
minutes at 24000 g. The supernatant is recovered and cor-
responds to the cytosolic fraction. The pellet (which con-
tains nuclei) is homogenized in buffer 4 (Hepes-KOH 10
mM, pH 7.6; KCl 100 mM; Spermine/HCl 0.15 mM; Sper-
midine 0.5 mM; DTT 0.5 mM) with 5 strokes at 800 rpm
and centrifuged 5 minutes at 1100 g. This step is repeated
3 times. The cleaned nuclei are homogenized in 2.25 mL
of buffer (Hepes-KOH 10 mM, pH 7.6; KCl 100 mM; DTT
0.5 mM) with 5 strokes at 800 rpm and transferred to a 3
mL ultra-centrifuge tube. 250 μL of ammonium (10% V/
V) sulfate is gently added and slowly agitated for 30 min-
utes. Then, a centrifugation is done at 90000 g for 40 min-
utes at 4°C. The supernatant which contains nuclear
proteins is transferred to another tube. 0.3 g/mL of
ammonium sulfate are added to the solution and let
under smooth agitation for 40 minutes. The solution is
centrifuged at 90000 g for 30 minutes at 4°C. 1 mL of
buffer 7 (Hepes-KOH pH 7.6 25 mM; KCl 150 mM; DTT
1 mM) is added to the supernatant after the centrifugation
and shaken for 15 minutes. The solution is dialyzed over-
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night and 2 hours again in buffer 7. The solution is centri-
fuged at 24000 g for 5 minutes. The supernatant is
collected and constitutes the nuclear fraction.

CyDye Labeling and Two-Dimensional Differential In-Gel 
Electrophoresis (2D-DIGE)
DIGE technology was used with at least triplicate experi-
ment for each nuclear and cytosol subproteomes from
WI38, hTERT-WI38 and HPV-WI38. The DIGE technology

allows 3 different protein fluorescent labelling by the use
of Cy dyes. Two different samples are labelled by Cy3 and
Cy5, whereas a pool of all samples is labelled by Cy2. A
total of 12 2D-DIGE gels were realised corresponding to
24 different samples applied. The Cy2 internal standard
sample reduces inter-gel experimental variations resulting
in statistically improved results. Protein samples (12.5 μg
each at 5 mg/mL) were labelled in 7 M urea, 2 M thiourea,
1.5% (w/v) ASB-14, 1.5% (w/v) CHAPS, 20 mM TRIS-

Experimental designFigure 3
Experimental design. Figure 3 shows an example of the experimental design applied for differential 2D-DIGE analysis and 
mass spectrometry based identification. Nuclear sub-proteomes from WI38, hTERT WI38 and HPV-WI38. Each spot is 
selected from the standardized abundance, then excised and digested for MS/MS analysis.
Page 10 of 13
(page number not for citation purposes)



Proteome Science 2008, 6:12 http://www.proteomesci.com/content/6/1/12
HCl, pH 8.5, according to the manufacturer procedure
(Amersham Biosciences part of GE Healthcare). Samples
were applied at least in triplicate with inversing Cy3/Cy5
labelling. An internal standard constituted by a mix of all
samples was Cy2 labelled. Differentially labelled samples
(12.5 μg of each Cy2-, Cy3-, and Cy5-labeled sample)
were pooled and resolved isoelectrically on 24-cm IPG
strips, pH 3–10, NL on a Protean IEF cell (Bio-Rad). After
active rehydration for 9 h with the sample, the isoelectric
focalisation is carried out up to 65000 Vh over night. IPG
strips were seeded in reduction buffer for 15 minutes
(DTT 130 mM, urea 6 M, Tris-HCl 0.373 M, pH 8.8, glyc-
erol 20% v/v, SDS 2% w/v) followed by an alkylation
(iodoacetamide 135 mM, urea 6 M, Tris-HCl pH 8.8
0.373M, glycerol 20% v/v, SDS 2% w/v) for additional 15
minutes. The second dimension electrophoresis was per-
formed overnight at 20°C in an Ettan Dalt II system (G.E.
Healthcare) at 1 W per gel. Each gel was finally scanned
with the Typhoon 9400 scanner (G.E. Healthcare) at the
wavelengths corresponding to each CyDye. Images were
analyzed with the DeCyder software 6.5 (G.E. Healthcare)
according to the manufacturer. Protein spots that showed
a statistically significant Student's t-test (p < 0.05) for an
increased or decreased in intensity superior at 30% were
accepted as being differentially expressed. Only spots that
had similar abundances in WI38 and WI38-HPV, and
were differentially expressed in WI38-hTERT were selected
for MS identification.

Protein identification
Spots of interest were automatically excised from the gel
with the Ettan Spot Picker and submitted to tryptic diges-
tion. The resulting peptides were extracted and rehydrated
in 10 μL of formic acid (1%). One microliter of sample
was deposited on an Ancorchip MALDI plate prespotted
with HCCA matrix (Bruker-Daltonics). Samples were ana-
lyzed with an UltraFlex II MALDI-TOF-TOF (Bruker Dal-
tonics) by MS fingerprint (spectra acquisition mass
range:70–4000 m/z). Peaks with the highest intensities
obtained in TOF-MS mode were subsequently analyzed
by LIFT MS/MS for confirmation (mass range 40–4000).
Protein identifications were carried out using the Biotools
software (version: 3.0, build 2.9, Bruker Daltonics), the
Mascot search engine (Version: 2.1.0) and SwissProt data-
base (Sprot 50.8). All spots discussed here had a score cor-
responding to a p-value < 0.001 (where P is the
probability that the observed match is a random event).
Identification with a p-value between 0.001 and 0.05 were
all manually confirmed. Figure 3 shows an example of the
general procedure applied for differential 2D analysis and
mass spectrometry based identification.
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