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Abstract

Background: Many biological processes recognize in particular the importance of protein complexes, and various
computational approaches have been developed to identify complexes from protein-protein interaction (PPI)
networks. However, high false-positive rate of PPIs leads to challenging identification.

Results: A protein semantic similarity measure is proposed in this study, based on the ontology structure of Gene
Ontology (GO) terms and GO annotations to estimate the reliability of interactions in PPI networks. Interaction pairs
with low GO semantic similarity are removed from the network as unreliable interactions. Then, a cluster-
expanding algorithm is used to detect complexes with core-attachment structure on filtered network. Our method
is applied to three different yeast PPI networks. The effectiveness of our method is examined on two benchmark
complex datasets. Experimental results show that our method performed better than other state-of-the-art
approaches in most evaluation metrics.

Conclusions: The method detects protein complexes from large scale PPI networks by filtering GO semantic
similarity. Removing interactions with low GO similarity significantly improves the performance of complex
identification. The expanding strategy is also effective to identify attachment proteins of complexes.

Background
Protein complexes are important molecular entities in
cellular organizations. With large amounts of protein
interactions produced by high-throughput experimental
techniques [1,2], protein complexes are able to be auto-
matically identified from genome-scale interaction net-
works by computational approaches. Generally, proteins
in a complex share more interactions among themselves
than with other proteins [3]. Many algorithms, based on
graph theory, have been proposed to identify protein
complexes by detecting dense regions in PPI networks,
such as MCODE [4], MCL [5], and CFinder [6]. How-
ever, their performance is affected by the false-positive
interactions in the network. In some experiments, the

proportion of false-positive interactions generated by
high-throughput techniques is estimated to be up to
50% [7]. It is reasonable to make use of biological infor-
mation to measure the reliability of interaction pairs or
predicted complexes. For example, protein function
annotation datasets are used in RNSC [8] and DECAFF
[9] to filter complexes with low functional homogeneity
or reliability.
GO annotation is a useful information resource to

measure the reliability of protein interaction pairs. The
GO project maintains three structured controlled voca-
bularies, which describe gene products in terms of
their associated biological processes, cellular compo-
nents, and molecular functions [10]. The ontology of
each domain is structured as a directed acyclic graph
(DAG), which organizes terms by their relationships.
The similarity of two gene products based on GO
annotations can be considered as the similarity of two
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sets of GO terms. The semantic similarity of GO terms
can be measured by the topological information in the
ontology structure.
In this paper, we attempt to make use of GO annota-

tions and the ontology structure of GO terms to mea-
sure semantic similarity of GO terms and proteins. The
similarity of two GO terms is measured based on their
average distance to their lowest common ancestors in
the ontology structure. Semantic similarity between pro-
teins is computed as the similarity of two sets of GO
terms, which annotate the two proteins respectively.
PPIs in the network are then weighted by the similarity
of interacting proteins for the filtering and clustering
steps. As far as we know, most approaches filter the pre-
dicted complexes with low density or statistical signifi-
cance in post processes [4,9,11,12], which still introduce
some unreliable interactions in the results. In our
method, however, the low-weight interactions are fil-
tered first, followed by a cluster-expanding algorithm to
identify high quality complexes consisting of only reli-
able interactions. Considering the core-attachment
structure revealed by Gavin et al. [13], which reflects the
inherent organization of protein complexes, we propose
a network clustering algorithm to identify the core and
attachment proteins of complexes successively. Firstly,
cliques in the filtered network are detected. Highly over-
lapping cliques are merged to form cores of complexes.
Secondly, we add attachment proteins to the cores,
making use of the cluster-expanding strategy in RRW
algorithm [11], which is appropriate for expanding clus-
ters consisting of multiple nodes in weighted networks.
By applying the clustering algorithm on the purified PPI
network, our method identifies complexes with high
biological significance and functional homogeneity.

Methods
In this section, we present, in detail, the two phases
used in our approach. In the first phase, protein seman-
tic similarity is computed based on their GO annota-
tions. Following this, a core-attachment structure
detection algorithm is applied to detect core and attach-
ment proteins of complexes from the filtered PPI net-
work. The flow of our method can be described in the
following steps:
(1) Computing protein semantic similarity for every

pair of proteins with interaction in the PPI network.
(2) Removing interactions with low similarity from the

original network.
(3) Finding cliques in the filtered network to form

complex cores. Multiple highly overlapping cliques are
merged to form one core.
(4) Adding attachment proteins to these cores with

the expanding strategy in RRW algorithm.

Semantic similarity for PPI
The GO database is currently one of the most compre-
hensive and well-curated ontology databases in the
bioinformatics community. The ontology structure of
GO terms is organized as DAGs of three domains with
terms as nodes and their relationships as directed edges.
The GO terms are structured by two kinds of relation-
ships to each other: “is-a” and “part-of”, representing
specific-to-general and part-to-whole relations
respectively.
Semantic similarity of GO terms can be measured by

their positions in the DAGs. In the task of semantic
similarity computation, we attempted to design our GO
semantic similarity measure based on a graph-based
method measuring concepts in a taxonomy structure
[14]. In the ontology structure, the semantic specificity
of a given term x can be measured by the path length
from the root node to x passing through its ancestors.
In a similar way, given a term x, its relative semantic
specificity from its ancestor a can be measured by the
path length from a to x. Since there may be multiple
paths from one node to another in DAGs, we define dis-
tance d(a, x) as the average path length from term a to
x, while a is one of ancestors of x. Two terms, x and y,
are considered more similar if their distances to their
lowest common ancestors are shorter, or their lowest
common ancestors average distance to the root is
longer. We define LCA(x, y) as the set of lowest com-
mon ancestors of term x and term y. For the node set
of common ancestors of × and y, a Î LCA(x, y) if the
paths from a to x and a to y do not pass through any
other common ancestor. Based on the graph characteris-
tics of GO terms, we define the similarity of two GO
terms x and y Sim(x, y) as follows:

Sim(x, y) =

∑

a∈LCA(x,y)

d(root, a)2

da(root, x)da(root, y)

|LCA(x, y)|
(1)

where root denotes a virtual node as the parent node
of the three root nodes of three distinct DAGs (biologi-
cal process, cellular component and molecular function)
in GO. da(root, x) denotes the average length of paths
from root to x passing through a, da(root, x)=d(root, a)
+d(a, x). Sim(x, y) reaches its minimum value zero when
x and y are terms in different domains, while it reaches
its maximum value 1 when x and y are the same term.
By the definition of term-wise similarity, we can mea-

sure the similarity of two proteins annotated by two sets
of GO terms. We calculate each pair of GO terms in
annotation sets of two proteins, and use the best-match
average approach [15] to evaluate the overall similarity
of the two term sets:
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PSim(A,B) =

∑

x∈TA
maxy∈TB(sim(x, y)) +

∑

y∈TB
maxx∈TA(sim(x, y))

|TA| + |TB|
(2)

TA and TB denote the term sets annotating protein A
and B respectively. For every term x in TA, we find the
most similar terms in TB to calculate
maxy∈TB(sim(x, y)) , and vice versa. Then we consider
the average value of these term-pair similarity values as
the similarity of protein A and B, which is also a uni-
form result.

Network clustering
We use PSim similarity to weight every pair-wise inter-
action in the PPI network. Considering the inaccuracy
of interaction network, we remove the interactions with
a PSim value no larger than a threshold filter_thres.
Only high quality interactions are involved in the fol-
lowing complex identification steps.
The core-attachment structure [13] provides an

insight view of inherent organization of protein com-
plexes. Several methods such as COACH [16] and
CORE [17] have made good use of this characteristic to
detect protein complexes from PPI networks. The core
proteins of a complex have relatively more interactions
among themselves and share a high degree of functional
similarity. Attachment proteins are the surrounding pro-
teins of the core performing relative functions.
In our algorithm, we first used the clique finding algo-

rithm as described in [18] to identify all cliques in the
network. Then, highly overlapping cliques are merged to
form larger clusters if their neighborhood affinity NA
defined as follows is above threshold merge_thres:

NA(A,B) =
|VA ∩ VB|2
|VA| × |VB|

(3)

where VA and VB denote the node sets of clique A and
B respectively. All of the merged clusters and cliques
not involved in the merging form core set of the com-
plex. Attachment proteins are added to each core by the
expanding strategy of RRW algorithm [11]. RRW is an
appropriate algorithm for cluster expanding as it simu-
lates a random walk with a restart probability starting
from multiple nodes in a network. After computing the
stationary vector of every single node in network, the
RRW algorithm expands clusters starting from every
node, adding one node to the cluster and saving the
expanded cluster in each expanding step. Then, the
clusters are sorted and filtered by their statistical signifi-
cance. Since this filtering strategy tends to generate rela-
tively small sized clusters, we use the expanding strategy
to run repeated random walk from every core protein
set with neighbor nodes, and only add the maximal
expansion of each cluster to the result set. The original

parameters of the minimum and maximum cluster size
of RRW are 5 and 11, while the size distributions of
hand-curated complexes from CYC2008 [19], Aloy [20]
and MIPS [21] indicate that most complexes are of a
size between 2 and 20. We set the parameters to 2 and
20 respectively in our method while other parameters
are set to default.
The flow of our algorithm is described by pseudo-

codes in Figure 1. The computation of protein semantic
similarity is executed in step (1) to (6), in which Ew

denotes the weighted edge set. After construction of the
weighted network G’, cliques are detected by algorithm
[18] in step (8). The procedure of a clique merging is
described in step (10) to (16). In step (19) RRW(G’,
core) denotes the RRW expanding procedure starting
from a cluster core. RRW(G’, core) computes affinity
score between each protein to the given cluster based
on the random walk stationary vectors generated from
G’. The closet protein to the cluster is added to the
cluster in each expanding step. This process is contin-
ued until no protein’s affinity score reaches a given
threshold. We collect only the maximal expansion of
each cluster as a predicted complex, which is different
from the original RRW algorithm.

Results
We apply our algorithm on three datasets of yeast pro-
tein interactions: Gavin [13], Krogan [22], and DIP [23].
The details of the interaction datasets are shown in
Table 1. Two complex datasets are used as benchmark
for evaluation. One is CYC2008 [19] with 408 com-
plexes used as benchmark complexes in most
approaches. The other one, named as “Combined”
below, is the union of Aloy[20], MIPS[21], and SGD
database[24] with 426 complexes used in COACH [16],
[25]and [26].
The GO resource we used can be downloaded from

http://www.geneontology.org/ with version 1.2028, dated
06/10/2011. The version of the annotation file of Sac-
charomyces cerevisiae is 1.1566 submitted on 06/18/
2011.
We evaluate the experimental result with six evalua-

tion metrics: precision (P), recall (R), F-measure (F),
sensitivity (Sn), PPV and accuracy (Acc), which are
described in [26]. A predicted complex is matched with
a benchmark complex if their NA is above 0.2, which is
used in most approaches.

Parameter selection
Before comparing with other approaches, the influence
of parameters was examined in our method. To opti-
mize our method, the edge filtering threshold, i.e., fil-
ter_thres, was set from 0 to 0.9 by an increment of 0.1
each time. To observe how filter_thres affected the
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result, the merge_thres was fixed to 1, which led to una-
vailable merging step. The precision, recall, and F-mea-
sure with Krogan-Combined datasets influenced by
different filter_thres are shown in Figure 2.

With the increase of filter_thres, the precision rises in
general, indicating that high accurate complexes can be
identified from high quality interactions. Therefore,
removing interaction pairs with low similarity

Figure 1 Flow of our algorithm.
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significantly improves the performance of complex iden-
tification. The GO semantic similarity measure we pro-
posed is effective in estimating the quality of PPI. The
F-measure reaches maximum when filter_thres is set to
an optimal value 0.6, which is also validated by other
combinations of network and benchmark datasets. In
addition, we found that the number of predicted com-
plexes is inversely proportional to filter_thres. This num-
ber is above 1,000 when filter_thres is less than 0.3,

which seems unreasonable for a network with 3581
nodes. This is because the clique finding algorithm [18]
generates cliques starting from every nodes in network.
Many of these cliques have a high proportion of com-
mon nodes. It is necessary to merge the large amounts
of overlapping cliques.
We present another experiment to find optimal mer-

ge_thres. As shown in Figure 3, the best result is gener-
ated by stepping over the merging step as merge_thres
set to 1. However, the F-measure is improved solely
with the increase of precision, while recall keeps the
same value when merge_thres changes from 0.5 to 1.
This indicates that the overlapping cliques may intro-
duce matching between multiple similar clusters and a
single benchmark complex. According to the definition
of precision [26], redundant correct answers in

Figure 2 The effect of filter_thres.

Table 1 Details of interaction datasets

Datasets Number of proteins Number of interactions

Gavin 1430 6531

Krogan 3581 14076

DIP 4928 17201

Figure 3 The effect of merge_thres.
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Figure 4 Performance comparison of various approaches on Gavin-Combined.

Figure 5 Performance comparison of various approaches on Krogan-Combined.

Figure 6 Performance comparison of various approaches on DIP-Combined.
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predicted complex set may leads to increase of preci-
sion. For a fair comparison with other approaches, we
set 0.5 as the optimal value of merge_thres.

Comparison with other approaches
We compared our method with six well-known
approaches: MCODE [4], CFinder [6], CMC [12], RRW
[11], COACH [16] and CORE [17] with optimal para-
meters. The result in three networks evaluated with
Combined benchmark dataset is shown in Figure 4, 5, 6.
Our method outperforms other approaches in the over-
all evaluation metric F-measure. In the three networks,
our method reaches the precision level of MCODE and
RRW, while it achieves a higher recall. This implies that
noisy interactions preclude the predicted complexes
from matching real complexes. These interactions are
removed effectively by our filtering steps.
Sensitivity, PPV and accuracy are metrics evaluating

the correspondence between the prediction and bench-
mark in micro level. Sensitivity represents the coverage
of a complex by its best-matching cluster (the maximal
fraction of proteins in the complex found in a common
cluster), while PPV measures how well a given cluster
predicts its best-matching complex [26]. Accuracy is the
geometric average of sensitivity and PPV. By reaching
an average level of these evaluation metrics, our method
can generate complexes matching more real complexes
accurately.
In Table 2, 3, 4, we demonstrate the comparison results

evaluated with CYC2008 benchmark dataset. It is indi-
cated that the performance of our method is similar with
different benchmarks. By focusing on the interactions
with high GO semantic similarity in the networks, our
method achieves higher recall and F-measure than the
other approaches. To evaluate the effectiveness of the
core-attachment based clustering steps in our algorithm,
we compared our method with original RRW algorithm
on the same filtered network by the filtering step in our
method with filter_thres set to 0.6. The parameters of
minimum and maximum size in the original RRW algo-
rithm are also set to 2 and 20 respectively. Figure 7
shows the comparison result on filtered networks

evaluated by Combined benchmark. It is shown that the
design of core-attachment clustering steps is relatively
more consistent with real complex structures.

Examples of predicted complexes
The predicted complexes of our approach are generated
from high similarity interactions in networks. Therefore,
they have high similarity in GO annotations. We present
several examples of predicted complexes generated from
Gavin dataset in Table 5 with their p-values of the three
GO domains. The p-value is the statistical significance
of the occurrence of a complex with respect to a GO
annotation. Usually a complex is considered to be statis-
tically significant if the p-value is less than 0.01. the p-
values of complexes are calculated with Bonferroni cor-
rection using the tool SGD’s GO::TermFinder [27]. The
NA scores with their matching real complexes are also
listed. As is shown in Table 5, five of them have high
matching rates and p-values, while three of them are
not matching any complex in two benchmark datasets.
The topology of the three complexes is presented in Fig-
ure 8. According to their p-values of GO annotations,
they have high functional homogeneity. They are possi-
bly potential real protein complexes that have not yet
been discovered. These predicted complexes provide
clues for biologists to discover new complexes.

Conclusions
Computational approaches for protein complex detec-
tion are often affected by false-positive interactions in

Table 2 Performance comparison of various approaches
on Gavin-CYC2008

Method P R F Sn PPV Acc

MCODE 0.739 0.154 0.255 0.283 0.519 0.384

CFinder 0.663 0.191 0.297 0.513 0.343 0.419

CMC 0.608 0.218 0.321 0.371 0.606 0.474

RRW 0.704 0.238 0.355 0.294 0.657 0.439

COACH 0.525 0.331 0.406 0.44 0.547 0.49

CORE 0.469 0.38 0.42 0.446 0.585 0.511

Ours 0.678 0.404 0.507 0.405 0.663 0.518

Table 3 Performance comparison of various approaches
on Krogan-CYC2008

Method P R F Sn PPV Acc

MCODE 0.612 0.081 0.142 0.273 0.345 0.307

CFinder 0.451 0.15 0.225 0.56 0.22 0.351

CMC 0.224 0.377 0.281 0.472 0.58 0.523

RRW 0.581 0.277 0.375 0.32 0.605 0.44

COACH 0.472 0.38 0.421 0.477 0.498 0.487

CORE 0.275 0.691 0.394 0.566 0.537 0.551

Ours 0.626 0.559 0.59 0.509 0.663 0.581

Table 4 Performance comparison of various approaches
on DIP-CYC2008

Method P R F Sn PPV Acc

MCODE 0.576 0.096 0.164 0.282 0.328 0.304

CFinder 0.396 0.257 0.312 0.612 0.297 0.437

CMC 0.283 0.505 0.363 0.523 0.526 0.525

RRW 0.541 0.365 0.436 0.378 0.557 0.459

COACH 0.418 0.529 0.467 0.545 0.481 0.512

CORE 0.16 0.662 0.258 0.569 0.567 0.568

Ours 0.537 0.699 0.607 0.583 0.578 0.581
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large scale PPI data. In this paper, we identify protein
complexes in PPI networks with a two-phase method.
We first measure the semantic similarity of GO terms
and proteins by the ontology structure to evaluate the
reliability of PPIs. After removing unreliable proportion
of interactions, a core-attachment based clustering
method is applied to the filtered network for complex

identification. The main contributions of this paper are:
1) proposing a graph-based GO semantic similarity mea-
sure to purify the PPI network, 2) designing a core-
attachment detection algorithm making use of the RRW
algorithm to detect complexes from the filtered network.
By comparing with various approaches, our method

outperforms the other approaches in overall evaluations.

Figure 7 The effect of core-attachment clustering strategy on filtered networks.

Table 5 Examples of predicted complexes

ID predicted complex NA GO biological processes GO molecular functions GO cellular components

annotation p-value annotation p-value annotation p-value

1 YGR095C YDL111C YGR158C
YCR035C YOL142W YHR069C
YOR001W YHR081W YDR280W
YNL232W YOL021C YGR195W

1 GO:0071051 1.10e-33 GO:0000175 2.77e-19 GO:0000176 1.25e-33

2 YPL243W YML105C YKL122C
YPR088C YDL092W YPL210C

1 GO:0006617 3.10e-18 GO:0008312 1.37e-15 GO:0005786 5.59e-19

3 YBR060C YPR162C YNL261W
YHR118C YML065W YLL004W

1 GO:0006267 3.07e-15 GO:0003688 3.54e-14 GO:0000808 1.65e-19

4 YHL025W YJL176C YNR023W
YOR290C YFL049W YPR034W
YBR289W YMR033W YPL129W

YDR073W YPL016W

0.917 GO:0042766 5.97e-30 GO:0008094 1.09e-3 GO:0016514 4.90e-33

5 YLR071C YGR104C YOR174W
YER022W YOL135C YHR041C
YGL025C YDR443C YBR253W
YNL236W YHR058C YOL051W
YMR112C YNR010W YBR193C
YPR070W YPR168W YCR081W

YDR308C

0.76 GO:0006366 1.80e-22 GO:0001104 8.82e-54 GO:0016592 4.61e-51

6 YLR357W YFR037C YPR034W
YBR245C YFR013W YPL235W
YOR304W YDR190C YCR052W
YKR008W YGL133W YDR303C

YER164W YPL082C

- GO:0006338 7.87e-24 GO:0016887 9.77e-17 GO:0016585 2.54e-19

7 YDR416W YAL032C YMR288W
YMR213W YHR165C YGR278W
YLR117C YDL209C YPL151C

YML049C YLL036C

- GO:0000398 2.35e-19 GO:0000384 2.04e-14 GO:0005681 5.52e-21

8 YNL252C YML025C YDR116C
YNL284C YGR220C YCR046C

- GO:0032543 2.74e-7 GO:0003735 2.16e-9 GO:0000315 1.05e-12
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The graph-based similarity measure enhances the com-
plex identification performance. Removing unreliable
interactions before clustering improves the performance
significantly. The strategy of expanding clusters by RRW
algorithm is also effective to identify the attachment
proteins in protein complexes. A future research can
focus on the similarity measure of PPI in the network.
Various measuring method can be applied to estimate
the reliability of protein pairs to filter the false-positive
interactions.
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