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Abstract

Background: Protein inference is an important computational step in proteomics. There exists a natural nest
relationship between protein inference and peptide identification, but these two steps are usually performed
separately in existing methods. We believe that both peptide identification and protein inference can be improved by
exploring such nest relationship.

Results: In this study, a feedback framework is proposed to process peptide identification reports from search
engines, and an iterative method is implemented to exemplify the processing of Sequest peptide identification
reports according to the framework. The iterative method is verified on two datasets with known validity of proteins
and peptides, and compared with ProteinProphet and PeptideProphet. The results have shown that not only can the
iterative method infer more true positive and less false positive proteins than ProteinProphet, but also identify more
true positive and less false positive peptides than PeptideProphet.

Conclusions: The proposed iterative method implemented according to the feedback framework can unify and
improve the results of peptide identification and protein inference.

Background
Protein inference by assembling peptides identified from
tandem mass spectra (MS/MS) is an important computa-
tional step in proteomics, based on which further analysis,
such as inference of protein structure and function can be
performed. Comprehensive discussion about this problem
can be referred to [1-3]. Existing MS/MS-based meth-
ods to address this problem can be categorized into two
groups. The first group performs protein inference and
peptide identification separately [4-8]. Peptides are first
identified from tandem mass spectra by de novo sequenc-
ing [9-11] or database search [12-14], and then proteins
are inferred by assembling these identified peptides. The
other group combines protein inference with peptide
identification, identifying peptides and proteins simulta-
neously [15-17]. A Barista model [16] has been built to
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formulate the protein inference as an optimization prob-
lem. A tripartite graph is used to represent the protein
inference problem, with layers corresponding to spectra,
peptides and proteins. The input to Barista is the tripar-
tite graph with a set of features describing the peptide-
spectrum-match (PSM). The score of a PSM is computed
with a nonlinear function based on the feature set, and
the score of a peptide is the maximum PSM score of
all spectra mapped to this peptide, then the score of a
protein is the normalized sum of its constituent peptide
scores. It is advantageous for thismodel to utilize the spec-
trum information in all the steps of its protein inference,
without discarding spectra from peptide identification to
protein inference. The parameters in the model are esti-
mated by training the model with reference data, and then
the trained model is used to infer proteins. Its application
is limited by the requirement of reference data to train the
model each time when a different dataset is analyzed.
Since many well-developed search engines for peptide

identification are available, methods for processing the
peptide identification reports from these engines have
been proposed. As an example, a nested mixture model
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[17] has been used by Li etc to estimate peptide and pro-
tein probability simultaneously with identified peptides
and their scores from search engines. This model allows
evidence feedback between proteins and their constituent
peptides. Several reasonable assumptions are adopted to
build this model, except that the problem of shared pep-
tides is completely ignored.
This paper proposes a unified framework to pro-

cess peptide identification results from database search
engines. The goal is to output a list of proteins and a
list of corresponding peptides at the same time, and it is
achieved by iteratively updating the two lists with a feed-
back from the inferred proteins to the selection of correct
peptides. Specifically, the inferred protein sequences are
used to search low-confidence peptides from the search
engine and the probabilities of these peptides are recom-
puted. Different methods can be designed according to
this framework for protein inference. Here, an iterative
method is exemplified to process Sequest peptide iden-
tification reports based on the proposed framework. In
addition, to address the challenge of assigning shared pep-
tides, an MS/MS intensity-based strategy is proposed to
compute the probabilities of shared peptides based on the
closeness between the intensity of a shared peptide and
the intensity of its siblings in parent proteins. We evaluate
the iterative method on two datasets with known valid-
ity. The results have shown that not only can it infer more
true positive and less false positive proteins than Protein-
Prophet [4], but also identify more true positive and less
false positive peptides than PeptideProphet [18].

Materials andmethods
Unified framework for MS-based protein inference
A unified framework for protein inference by assembling
peptides identified from tandem mass spectra is intro-
duced. Peptide identification and protein inference are
combined together because there exists a natural nest
relationship between these two computational steps in
proteomics. The diagram of the framework is given in
Figure 1. Here, the starting point is the peptide identi-
fication reports from search engines, such as Sequest or
Mascot. The main operations in the framework include:
(1) select high-confidence peptides to search proteins and
produce a list of putative proteins; (2) compute protein
probabilities; (3) use proteins with high-confidence to
replenish the peptide list with previous low-confidence
peptides, and recompute the probabilities of all selected
peptides. These steps are repeated until the stop condition
is reached. The feedback from protein inference to peptide
identification can help to improve peptide identification
results, and thus improve protein inference results as well.
The computationwill stop when protein probabilities con-
verge, and then we can obtain the inferred proteins and
identified peptides simultaneously.

In the following sections, an iterative method is imple-
mented to process Sequest peptide identification reports
according to the unified framework. A list of peptides
and a list of proteins will be output simultaneously. The
computation steps in the iteration process are introduced.

Protein inference model
Given Sequest peptide identification reports, and the
probabilities of peptide identifications computed with
PeptideProphet [18], the protein inference model in the
nth iteration is written as

q(n)

k = Pr(Qk = 1|X(n−1)
k ,

n(n−1)
k
Nk

)
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(1)

where the superscripts (n) and (n − 1) denote the index
of iteration, and n ≥ 1. In the following, for simplicity,
we will only introduce the variables if it is not necessary
to mention the index of iteration. qk is the probability of
protein Qk being present in the sample; nk and Nk are
the number of experimental and theoretical peptides from
protein Qk ; xi is the probability of peptide Pi being cor-
rectly identified, and wk

i is the probability that peptide Pi
comes from protein Qk , the computation of which will be
introduced in the next section.
Here, it is assumed that the event “peptide Pi is cor-

rectly identified, i.e. Pi = 1”, the event “peptide Pi comes
from protein Qk , i.e., Pi ∈ Qk”, and the event “protein
Qk exists in the sample, i.e., Qk = 1” are independent
of each other, because whether peptide Pi is identified
is not dependent on whether protein Qk is present in
the sample. Peptide Pi could be generated by other pro-
teins. In addition, the number of theoretical peptides Nk
is included to factor the length of a protein in the model.
It is computed based on these criteria: (1) trypsin-cutting;
(2) two missed cleavages are allowed; and (3) peptides
with masses falling in [Mmin,Mmax]. The minimumMmin
and maximum Mmax peptide mass are determined from
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Figure 1 Unified framework for MS-based protein inference. This
framework for protein inference starts with the peptide identification
reports from search engines. It unifies peptide identification and
protein inference by adding a feedback from identified proteins to
the identification of peptides. The end products from the framework
are a list of identified peptides and a list of counterpart proteins.

the peptide identification reports. An alternative way is to
only consider peptides with a certain length [16].

The computation ofwk
i

It is difficult to compute the probabilities of a shared
peptide belonging to different parent proteins, because
the connection between peptides and proteins is lost
in proteome experiments. Here we propose an MS/MS
intensity-based strategy to assign shared peptides to truly
present proteins. The idea is that, for a given peptide
which is shared by protein Q1 and Q2, if the peptide was
from Q1, then its intensity will be closer to the intensity of
its siblings in Q1 than that in Q2. Two peptides are siblings
when they are from the same parent protein. The intensity
of a peptide is computed with the signal peak intensity in
its matched tandem mass spectra.
This MS/MS intensity-based method requires that all

peptides in the sample have a similar ability to be ion-
ized and fragmented, and thus have a similar chance to
be analyzed by mass spectrometers. However, this is not
the case in practice. One way to alleviate the effect of
peptide detectability [19] on peptide intensity is that, for

each protein with shared peptides, we compute the aver-
age intensity of peptide siblings and compare this intensity
to the intensity of a shared peptide. Some peptides of a
protein may have low detectability, but others may not.
Thus, averaging the intensity of all peptide siblings can
help to reduce the effect of detectability on intensity. An
alternative way is to combine peptide detectability into
the computation of peptide intensity, if the computation
of detectability is accurate enough. Here, we use the first
simple way and leave the second method to future inves-
tigate. The intensity of a peptide is computed as the sum
of the signal peak intensity in all its matched tandemmass
spectra, which is given by

Ip =
Ns∑
i=1

Spi , (2)

where Ip is the peptide intensity and Ns is the number of
tandem mass spectra matched to the peptide. Spi is the
preliminary score in Sequest [13] output for the ith tan-
dem mass spectrum, which is the sum of the intensity of
all signal peaks in the spectrum. And it is factored with the
ratio between experimental and theoretical peaks which
can be derived from the peptide. This factor can eliminate
the unfair advantage of longer peptides over short ones.
In addition, we normalize Spi with the maximum value in
each whole data set.
As previously mentioned, for a given shared peptide, the

intensity of its siblings is averaged in order to reduce the
effect of peptide detectability on intensity. So the intensity
of a shared peptide’s siblings is calculated by

Ib = 1
Nb

Nb∑
i=1

Ipi , (3)

where Ib is the average intensity of a given shared pep-
tide’s siblings, and Nb is the number of its siblings. Ipi is
the intensity of its ith peptide sibling.
The intensity of a shared peptide is contributed by all of

its parent proteins in the sample. This makes the intensity
proportion contributed by each protein sum to unity. A
simple example is used to illustrate how to compute these
proportions. In Figure 2, peptide P2 is shared by protein
Qk and Qj. The proportion contributed by protein Qk to
the intensity of peptide P2 is calculated by

Pk′2 = |I2 − I3|
I2

, (4)

where | · | is the absolute value operator. Similarly, the
proportion contributed by protein Qj is given by

Pj′2 = |I2 − I1|
I2

. (5)



Shi and Wu Proteome Science 2012, 10:68 Page 4 of 11
http://www.proteomesci.com/content/10/1/68

Figure 2 An example of the assignment of shared peptides. This example illustrates the computation of the probabilities that a shared peptide
belonging to its parent proteins. I1, I2, and I3 are the respective intensity of the three peptides.

Since the proportions contributed by all proteins sum to
1, the previous proportions are normalized,

Pk2 = Pk′2
Pk′2 + Pj′2

, Pj2 = Pj′2
Pk′2 + Pj′2

. (6)

Here, we take these proportions to represent the proba-
bilities of P2 belonging to protein Qk and Qj, respectively.
The probability for any peptide Pi, unique or shared,
belonging to any protein Qk is given as

wk
i =

{
Pki Pi is shared by Qk

1 Pi is unique to Qk .
(7)

During the iteration, after computing the probabili-
ties of proteins, high-confidence proteins are selected to
replenish the list of peptides, and new group of proteins
and peptides are used to update the values of wk

i and nk .
It is worth pointing out that although the probabilities

of shared peptides also sum to 1 as in ProteinProphet [4],
it is not required that these shared peptides can only come
from one truly present protein in the sample. In the case of
ProteinProphet, the weights of a shared peptide will even-
tually be one of them is or close to 1, and the others are
or close to 0, because it assumes that shared peptides can
only come from one truly present protein. This is not true
in practical experiments and also misinterprets the real
meaning of shared peptides. Based on this assumption,
a shared peptide can only come from one truly present
protein in the sample; it is shared because it can be also
generated by some other proteins in the chosen database.
By removing this assumption, the probability wk

i allows
shared peptides to be assigned to multiple proteins in the
sample, as long as these proteins have enough evidence to
support their existence.

Recompute peptide probability
After we obtain the probability of all proteins in the nth
iteration, for each peptide Pi, we find all of its parent
proteins, and recompute its probability xi as follows

x(n)
i = Pr(Pi = 1|Qi1, Qi2 . . .QiMi) =

Mi∑
k=1

wk(n)

i q(n)

k ,

(8)

where the superscript (n) is the index of iteration; Mi
is the number of inferred parent proteins of peptide Pi;
wk
i and qk are defined in Equation(7) and Equation(1),

respectively.
To this point, we have introduced all the computational

steps in the iteration process. The initial protein probabil-
ities are set to the same of the value 1 by assuming that
each protein has the same chance to be present in the sam-
ple as long as it has constituent peptides being identified.
The initial values of peptide probability xi is the probabil-
ity output by PeptideProphet, and the initial values of wk

i
and nk are computed from the Sequest reports.

Experimental data
Two datasets are analyzed with the proposed method, and
they were described in [20]. These datasets are adopted
because they are collected specifically for verifying algo-
rithms of protein inference and peptide identification.
The search results are also provided along with these
datasets, which makes it easier to be used as reference
data. Database search for peptide identification was done
with Sequest [13], and the statistical analysis of identifi-
cation results was done with PeptideProphet [18]. Notice
that some possible contaminants are considered in the
datasets [20], and the summary of the two datasets is given
in Table 1.

Evaluation of the method
The proposed method is compared with PeptideProphet
[18] and ProteinProphet [4] for the peptide identifica-
tion and protein inference, respectively. Specifically, we
compare the number of true positive and false positive
peptides and proteins produced from these methods.

Results and discussion
Protein inference results
The following sections will demonstrate the process-
ing results of Sequest peptide identification reports with
the proposed iterative method. First, we show the pro-
tein inference results. Figure 3(a) shows that the itera-
tive method always identifies more truly present proteins
in Mix 1 than ProteinProphet. When the threshold for
selecting high-confidence peptides is less than 1, all the
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Table 1 Statistics of ISB standard protein mix datasets

MS/MS Standard Proteins Contaminants T&U1 F&U2 T&S3 F&S4

Mix1 86850 18 13 1168 990 50 9

Mix2 83293 18 15 1773 2060 73 21

This table gives some statistics of the ISB standard protein mix datasets, including the number of tandemmass spectra, the number of standard proteins, the number
of contaminant proteins and the number of peptides.
1True and Unique peptides.
2False and unique peptides.
3True and Shared peptides.
4False and Shared peptides.

31 true proteins can be identified by the iterative method;
while 30 proteins can be identified when the threshold is
1. This indicates that all peptides identified for the missed
protein have probabilities less than 1. Meanwhile, Pro-
teinProphet can only identify 27 of the 31 truly present
proteins. Figure 3(b) shows that the number of false pos-
itive proteins output by the iterative method decreases
with the increase of high-confidence peptide selection
threshold. However, ProteinProphet outputs the same
number of false positive proteins regardless of the thresh-
old. The reason is that higher selection thresholds reject

more absent peptides to be included in the iteration pro-
cess, and thus less absent proteins will be inferred by the
iterative method. On the other hand, some false positive
proteins are removed with the elimination-rule in the iter-
ation process, while they are retained by ProteinProphet.
The elimination-rule will be introduced later.
Protein inference results of Mix 2 are shown in Figure 4.

They demonstrate the same patterns as the results of
Mix 1. Based on the protein inference results of the two
datasets, the iterative method shows better performance
than ProteinProphet in terms of the number of true and
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Figure 3 Protein inference results of Mix 1. This figure shows the protein inference results of Mix 1. The protein identification threshold is set as
0.95. Figure 3(a) gives the number of true positive proteins identified by the iterative method (IM) and ProteinProphet. It can be seen that IM always
identifies more true proteins than ProteinProphet. When the high-confidence peptide selection threshold is less than 1, all the 31 true proteins can
be identified; while 30 proteins can be identified when the threshold is 1. This indicates that all peptides identified for the missed protein have
probabilities less than 1. Meanwhile, ProteinProphet can only identify 27 of the 31 true proteins. Figure 3(b) shows that the number of false positive
proteins output by IM decreases with the increase of high-confidence peptide selection threshold, however, ProteinProphet outputs the same
number of false positive proteins regardless of the threshold. The reason is that higher selection thresholds reject more false peptides to be
included in the iteration process, and thus less false proteins will be identified by IM. On the other hand, some false positive proteins are removed
with the elimination-rule in the iteration process, while they are retained by ProteinProphet.
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Figure 4 Protein inference results of Mix 2. This figure shows the protein inference results of Mix 2. The protein identification threshold is set as
0.95. They demonstrate the same patterns as the results of Mix 1. Based on the protein inference results of the two datasets, IM shows the potential
of better performance than ProteinProphet in terms of the number of true and false positive proteins.
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Figure 5 Protein inference results of Mix 1 by varying protein inference threshold. This figure shows the protein inference results of Mix 1
when the protein inference threshold is varied. The threshold for selecting high-confidence peptides is set as 0.95. It shows that the iterative
method consistently outputs more true positive proteins and less false positive proteins than ProteinProphet.
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false positive proteins. In addition, we also show the num-
ber of true positive and false positive inferred proteins
by varying the protein inference threshold, which are
given in Figure 5 and 6. Here, the threshold for selecting
high-confidence peptides is set as 0.95. It shows that the
iterative method consistently outputs more true positive
proteins and less false positive proteins than Protein-
Prophet as well.

Peptide identification results
Peptide identification results are given in this section.
Figure 7(a) shows that the iterative method outputs all
true peptides at any threshold but 1, while the number
of true peptides output by PeptideProphet deceases with
the increase of threshold. The reason is that the itera-
tive method recomputes the probability of false negative
peptides by using extra information from the identified
proteins. The fact that it cannot output all true peptides
at the threshold of 1 agrees with that one truly present
protein is missed at this threshold. Figure 7(b) shows
that the iterative method can produce much less false
positives than PeptideProphet at all thresholds but 1. At
the threshold of 1, the iterative method generates more
false positive peptides than PeptideProphet. However, it
is shown in Figure 3(b) that it outputs less false positive
proteins than ProteinProphet (8 versus 16). The reason
behind this is that the feedback framework always unifies

the identified peptides with the inferred proteins. More
specifically, there are more false positive peptides mapped
to the 8 false positive proteins from the iterative method
than thosemapped to the 16 ones from ProteinProphet. In
other words, negative peptides from false positive proteins
are output as false positives in the iterative method, while
for PeptideProphet, peptides are selected only by their
probabilities. The feedback framework also explains why
the number of false positives from the iterative method is
steady versus threshold, that is because these peptides are
from the few counterpart proteins.
Peptide identification results of Mix 2 are illustrated

in Figure 8. They have the same trend as the results of
Mix 1. Both peptide identification results indicate that the
iterative method can identify more true positive and less
false positive peptides than PeptideProphet. This can be
attributed to the feedback framework, which recomputes
the probability of true peptides with low PeptideProphet
probability, and eliminates negative peptides of unidenti-
fied proteins.

Shared peptides
The identification results of shared peptides are shown
in Figures 9 and 10. It is shown in Figure 9 that the
iterative method outputs all true shared peptides of Mix
1 regardless of threshold, while this number from Pep-
tideProphet decreases rapidly with the increase of the
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Figure 6 Protein inference results of Mix 2 by varying protein inference threshold. This figure shows the protein inference results of Mix 2
when the protein inference threshold is varied. The threshold for selecting high-confidence peptides is set as 0.95. They demonstrate the same
patterns as the results of Mix 1.
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Figure 7 Peptide identification results of Mix 1. This figure illustrates the peptide identification results of Mix 1. Figure 5(a) shows that IM
outputs all true peptides at any threshold but 1, while the number of true peptides output by PeptideProphet deceases with the increase of
threshold. The reason is that IM recomputes the probability of false negative peptides by using extra information from the identified proteins. The
fact that it cannot output all true peptides at the threshold of 1 agrees with that one true protein is missed at this threshold. Figure 5(b) shows that
IM can produce much less false positives than PeptideProphet at all thresholds but 1. At threshold 1, although IM outputs 8 false positive proteins
(see Figure 3(b)), less than 16 from ProteinProphet, its generation of more false positive peptides is due to the feedback framework which unifies the
peptide and protein identification results. That is, negative peptides from false positive proteins are output as false positives, while for
PeptideProphet, peptides are selected only by their probabilities. The feedback framework also explains why the number of false positives from IM is
steady versus threshold, that is because these peptides are from the few counterpart proteins.

threshold. In addition, the iterative method outputs a con-
stant number of false positive shared peptides. This is
because these peptides are from one false positive pro-
tein, of which the constituent peptides are given in Table 2.
This protein is false positive according to the data source
[20], while it is inferred with probability 1 by Protein-
Prophet. The identification results of Mix 2 are given in
Figure 10. They have a similar pattern as the results of Mix
1, except that the number of false positives identified by
the iterative method also decreases with the increase of
the threshold as PeptideProphet. Generally, this iterative
method can identify muchmore true shared peptides than
PeptideProphet, and output very few false positives.

Convergence of the iterative method
It is not attempted here to give amathematical proof of the
convergence of the iterative method. Instead, an explana-
tion is provided. The stop criterion is the convergence of
the probabilities of the putative proteins. According to the
flowchart in Figure 1, the stop criterion naturally fails if
there is any change to the putative protein list. In addition,
the protein inference model can assure that the probabil-
ities of proteins with high-confidence identified peptides

will converge to 1. Therefore, the convergence of the pro-
tein probabilities is reduced to reaching the steady state of
the protein list. Since the protein list is produced by using
a group of peptides to find their parent proteins, this stop
criterion can be further reduced to reaching the steady
state of the peptide list.
The steady state of the peptide list is guaranteed. Pep-

tides can be classified into unique peptides and shared
peptides. First, we will see that shared peptides can remain
steady in the list. There are three kinds of shared pep-
tides in the iteration process: shared by both negative
and positive, by negative and by positive proteins. (Given
the threshold of high-confidence proteins, proteins with
probability equal to or greater than the threshold are
classified as positive; otherwise, negative). If a peptide
is only shared by negative proteins, then it will not be
selected into the high-confidence peptide list; if a pep-
tide is only shared by positive proteins, then it will be
selected and remains steady in the peptide list. If a pep-
tide is shared by both negative and positive proteins, then
it will be included and eventually remains steady in the
peptide list. This is assured by the discovery and appli-
cation of an elimination-rule for negative proteins which
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Figure 8 Peptide identification results of Mix 2. This figure illustrates the peptide identification results of Mix 2. They have the same trend as the
results of Mix 1. Both peptide identification results indicate that IM can identify more true positive and less false positive peptides than
PeptideProphet. This can be attributed to the feedback framework, which recomputes the probability of true peptides with low PeptideProphet
probability, and eliminates negative peptides of unidentified proteins.

share peptides with positive proteins. During the itera-
tion, some shared peptides are selected into the process by
positive proteins. Then, these peptides are used to search
proteins, and negative proteins will be introduced into the
iteration process. After several iterations, these negative
proteins will be removed because of their low probabilities
produced by the protein inference model. However, they
will be re-selected into the cycle due to the shared pep-
tides from positive proteins. Therefore, if these proteins
are allowed to enter the iteration process, they will always
be “in and out” of the putative protein list. Proteins with
such pattern will be eliminated from the iteration pro-
cess. This elimination-rule can rule out negative proteins,
which are usually also absent proteins, and thus increase
the chance of assigning shared peptides to truly present
proteins. After the removal of those false proteins, shared
peptides will only be considered from positive proteins,
and thus shared peptides can remain steady in the peptide
list.
Similarly, there are three kinds of unique peptides:

unique to positive proteins, unique to negative proteins
with no peptides shared with positive proteins and unique
to negative proteins with shared peptides from posi-
tive proteins. In these three situations, only unique pep-
tides from positive proteins will stay steady in the high-
confidence peptide list. Unique peptides from negative
proteins with no shared peptides from positive proteins

will not be selected at all; while if the negative proteins
with shared peptides from positive proteins, these unique
peptides will be eliminated eventually with the removal of
these proteins by the elimination-rule. Therefore, unique
peptides can also remain steady in the peptide list, and
this completes the explanation of the convergence of the
iterative method.
In addition, we briefly account the scalability of our

method here. Before beginning the iterative method, we
need to construct two hash tables which are used to orga-
nize the information about each peptide and each protein
from the Sequest reports and PeptideProphet probabil-
ities, the complexity of which are O(MN) and O(N),
respectively. When running the iterative method, the cost
of each iteration is (O(M×max(Mi)) +O(N ×max(nk)),
i = 1 . . .M; k = 1 . . .N), where M and N are the total
number of peptides and proteins involved in the itera-
tion process, respectively; andMi is the number of parent
proteins of peptide Pi, and nk is the number of peptides
mapped to protein Qk .

Conclusion
This paper proposed a unified feedback framework for
protein inference based on peptides identified from tan-
dem mass spectra, and an iterative method is imple-
mented to process Sequest peptide identification reports
according to this framework. This method outputs a list
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Figure 9 Results of shared peptides of Mix 1. This figure illustrates the identification results of shared peptides of Mix 1. It is shown that IM
outputs all true shared peptides of Mix 1 regardless of threshold, while this number from PeptideProphet decreases rapidly with the increase of the
threshold. In addition, IM outputs a constant number of false positive shared peptides. This is because these peptides are from one false positive
protein, of which the constituent peptides are given in Table 2.
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Figure 10 Results of shared peptides of Mix 2. This figure illustrates the identification results of shared peptides of Mix 2. They have a similar
pattern as the results of Mix 1, except that IM can also output zero false positive as PeptideProphet. Generally, this iterative method can identify
much more true shared peptides than PeptideProphet, and output very few false positives.
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Table 2 Protein SW:K2C1 HUMAN and its constituent
peptides

Protein Constituent peptides

SLVNLGGSK

THNLEPYFESFINNLR

YEELQITAGRHGDSVR

QNEDIAQK

TNAENEFVTIKK

SW:K2C1 YEELQITAGR

HUMAN NKYEDEINKR

WELLQQVDTSTR

SLDLDSIIAEVK

SLNNQFASFIDK

NKLNDLEDALQQAKEDLAR

NKLNDLEDALQQAK

SKAEAESLYQSK

Protein SW:K2C1 HUMAN is a false protein in the sample. This table shows the
two false positive peptides (in bold) contained in the protein and its other
constituent peptides identified by the iterative method.

of peptides and a list of counterpart proteins simultane-
ously. Based on the two datasets from standard proteins,
the results have shown that the iterative method per-
forms superiorly to the popular programs PeptideProphet
and ProteinProphet in identifying peptides and proteins.
However, at this point, the implementation of the iterative
method is not ready for the practical use on identifying
peptides and proteins like PeptideProphet and Protein-
Prophet. First, it is not tested with complex datasets yet,
so the rigor of this method needs more examination.
Secondly, it is mainly developed for testing the frame-
work, not for direct-use like those programs. Based on
the results we got, there is obvious advancement of this
method, and we will leave the development of a practical
implementation as the future work.

Competing interests
The authors declare that they have no competing interests.

Author’s contributions
JS developed the algorithm, designed and executed all experimental work,
and wrote the first draft. FXW supervised and initiated the project, and revised
the manuscript. Both authors read and approved the manuscript.

Acknowledgements
This work was supported by the Natural Sciences and Engineering Research
Council of Canada (NSERC). The comments and suggestions given by the
anonymous reviewers greatly improved the article.

Received: 9 July 2012 Accepted: 2 November 2012
Published: 19 November 2012

References
1. Nesvizhskii AI, Aebersold R: Interpretation of Shotgun Proteomic Data:

the protein inference problem.Mol Cell Proteomics 2005, 4:1419–1440.
2. Shi J, Wu FX: Protein inference by assembling peptides identified

from tandemmass spectra. Current Bioinformatics 2009, 4:226–233.

3. Huang T, Wang J, Yu W, He Z: Protein inference: a review. Brief
Bioinform 2012, 13:586–614.

4. Nesvizhskii AI, Keller A, Kolker E, Aebersold R: A statistical model for
identifying proteins by tandemmass spectrometry. Anal Chem 2003,
75:4646–4658.

5. Zhang B, Chambers MC, Tabb DL: Proteomic parsimony through
bipartite graph analysis improves accuracy and transparancy. J
Proteome Res 2007, 6:3549–3557.

6. Price TS, Lucitt MB, Wu W, Austin DJ, Pizarro A, Yocum AK, Blair IA,
FitzGerald GA, Grosser T: EBP: a program for protein identification
using multiple tandemmass spectrometry datasets.Mol Cell
Proteomics 2007, 6:527–536.

7. Alves P, Arnold RJ, Novotny MV, Radivojac P, Reilly JP, Tang H:
Advancement in protein inference from shotgun proteomics using
peptide detectability. Pac Symp Biocomputing 2007, 12:409–420.

8. Li YF, Arnold RJ, Li Y, Radivojac P, Sheng Q, Tang H: A Bayesian approach
to protein inference problem in shotgun proteomics. J Comput Biol
2009, 16:1183–1193.

9. Taylor JA, Johnson RS: Sequence database searches via de novo
peptide sequencing by tandemmass spectrometry. Random
CommunMass Spectrom 1997, 11:1067–1075.

10. Ma B, Zhang K, Hendrie C, Liang C, Li M, Doherty-Kirby A, Lajoie G: PEAKS:
Powerful software for peptide de novo sequecning by tandemmass
spectrometry. Rapid CommunMass Spectrum 2003, 17:2337–2342.

11. Mo L, Dutta D, Wan Y, Chen T:MSNovo: A dynamic programming
algorithm for de novo peptide sequencing via tandemmass
spectrometry. Anal Chem 2007, 79:4870–4878.

12. Perkins DN, Pappin DJC, Creasy DM, Cottrell JS: Probability-based
protein identification by searching sequence databases using mass
spectrometry data. Electrophoresis 1999, 20:3551–3567.

13. Eng JK, McCormack AL, III JRY: An approach to correlate tandemmass
spectral data of peptides with amino acid sequences in a protein
database. J Am SocMass Spectrom 1994, 5:976–989.

14. Craig R, Beavis RC: TANDEM: matching proteins with tandemmass
spectra. Bioinformatics 2004, 20:1466–1467.

15. Shen C, Wang Z, Shankar G, Zhang X, Li L: A hierarchical statistical
model to assess the confidence of peptides and proteins inferred
from tandemmass spectrometry. Bioinformatics 2007, 24:202–208.

16. Spivak M, Weston J, Tomazela D, MacCoss MJ, Noble WS: Direct
maximization of protein identifications from tandemmass spectra.
Mol Cell Proteomics 2012, 11(2).

17. Li Q, MacCoss M, Stephens M: A nested mixture model for protein
identification using mass spectrometry. Ann Appl Statist 2010,
4(2):962–987.

18. Keller A, Nesvizhskii AI, Kolker E, Aebersold R: Empirical statistical model
to estimate the accuracy of peptide identifications made by MS/MS
and database search. Anal Chem 2002, 74:5383–5392.

19. Tang H, Arnold RJ, Alves P, Xun Z, Clemmer DE, Novotny MV, Reilly JP,
Radivojac P: A computational approach toward label-free protein
quantification using predicted peptide detectability. Bioinformatics
2006, 22:e481—e488.

20. Klimek J, Eddes JS, Hohmann L, Jackson J, Peterson A, Letarte S, Gafken
PR, Katz JE, Mallick P, Lee H, Schmidt A, Ossola R, Eng JK, Aebersold R,
Martin DB: The standard protein mix database: a diverse data set to
assist in the production of improved peptide and protein
identification software tools. J Proteome Res 2008, 7:96–103.

doi:10.1186/1477-5956-10-68
Cite this article as: Shi andWu:A feedback framework for protein inference
with peptides identified from tandem mass spectra. Proteome Science 2012
10:68.


	Abstract
	Background
	Results
	Conclusions

	Background
	Materials and methods
	Unified framework for MS-based protein inference
	Protein inference model
	The computation of wik
	Recompute peptide probability
	Experimental data
	Evaluation of the method

	Results and discussion
	Protein inference results
	Peptide identification results
	Shared peptides
	Convergence of the iterative method

	Conclusion
	Competing interests
	Author's contributions
	Acknowledgements
	References

