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Abstract

Background: A giant congenital melanocytic nevus (GCMN) is a malformation of the pigment cells. It is a distress
to the patients for two reasons: one is disfigurement, and the other is the possibility of malignant changes.
However, the underlying mechanisms of the development of GCMN and melanotumorigenesis in GCMN are
unknown. Hence, the aim of this study was to identify the proteomic alterations and associated functional
pathways in GCMN.

Results: Proteomic differences between GCMN (n = 3) and normal skin samples (n = 3) were analyzed by
one-dimensional-liquid chromatography-tandem mass spectrometry Relative levels of the selected proteins were
validated using western blot analysis. The biological processes associated with the abundance modified proteins
were analyzed using bioinformatic tools. Among the 46 abundance modified proteins, expression of 4 proteins was
significantly downregulated and expression of 42 proteins was significantly upregulated in GCMN compared to
normal skin samples (p < 0.05). More importantly, 31% of the upregulated proteins were implicated in various
cancers, with five proteins being specifically related with melanoma. The abundance modified proteins in GCMN
were involved in the biological processes of neurotrophin signaling, melanosome, and downregulated of MTA-3 in
ER-negative breast tumors. In particular, an increase in the expression of the 14-3-3 protein family members
appeared to be associated with key cellular biological functions in GCMN. Western blot analysis confirmed the
upregulation of 14-3-3epsilon, 14-3-3 tau, and prohibitin in GCMN.

Conclusion: These findings suggest that GCMN exhibits potential proteomic alterations, which may play a role in
melanotumorigenesis, and the significant alteration of 14-3-3 family proteins could be a key regulator of the
biological pathway remodeling in GCMN.
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Table 1 Clinical characteristics of GCMN and normal skin
samples

Sample ID Age, yr Gender Location Experiment

Normal

Normal 1* 8 Male Face LC-MS

Normal 2* 5 Female Face LC-MS

Normal 3* 6 Female Face LC-MS

Normal 4 14 Female Forehead Western blot

Normal 5 11 Female Face Western blot

Normal 6 19 Female Forehead Western blot

Normal 7 36 Female Face Western blot

Normal 8 18 Female Face Western blot

Normal 9 21 Female Face Western blot

Normal 10 40 Female Face Western blot

GCMN

GCMN 1 8 Male Face LC-MS

GCMN 2 5 Female Face LC-MS

GCMN 3 6 Female Face LC-MS

GCMN 4 8 Male Forehead Western blot

GCMN 5 6 Female Abdomen Western blot

GCMN 6 3 Female Left leg Western blot

GCMN 7 3 Male Face Western blot

GCMN 8 6 Female Forehead Western blot

GCMN 9 7 Male Abdomen Western blot

GCMN 10 6 Female Head Western blot

* Normal skin samples excised from GCMN patient ID 1, 2, 3.
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Background
Congenital melanocytic nevi (CMN) are pigment cell
malformations that are visible at birth, or are nevi show-
ing congenital features that become clinically obvious
shortly after birth [1]. CMN is caused by abnormal mel-
anocyte differentiation, migration, and deposition in the
dermis during the early stages of embryogenesis [2,3]. It
is a distress to patients for two reasons: one is disfigure-
ment, and the other is the increased risk of developing
malignant melanoma [3,4], especially in individuals with
giant congenital melanocytic nevi (GCMN; over 20 cm
in diameter) [5]. Several genomic and proteomic studies
have been performed to elucidate the mechanism of
melanotumorigenesis arising from CMN. Gene-based
analyses have revealed that the oncogenic BRAF [6] and
NRAS [7] mutations are frequently seen in CMN. Add-
itionally, increased Bcl-2 expression in CMN has been
suggested to suppress apoptosis, which otherwise plays
an important role in the maintenance of nevocytes [8].
In spite of these findings, the major biological processes
and pathways of melanotumorigenesis remain unclear.
Therefore, the complete proteomic characterization of
GCMN and related biological pathways through com-
parative protein profiling is essential to understand the
underlying mechanism of the origin of GCMN and the
subsequent process of melanotumorigenesis.
In this study, the proteomic alteration and systemic

properties of GCMN were assessed, with the aim of
gaining an insight into the functional association be-
tween GCMN and melanotumorigenesis. We used label-
free liquid chromatography-mass spectrometry (LC-MS)
and established bioinformatic tools to identify the pro-
teins that may play a key role in the malignant trans-
formation of GCMN. We found that the 46 proteins
were changed in protein abundance levels between nor-
mal skin and GCMN samples, and these proteins
belonged to tightly organized functional clusters. More-
over, we found that five of the identified proteins were
implicated in melanoma. The results of this study will
improve our understanding in the biological identifica-
tion of GCMN and the possible mechanisms that give
rise to GCMN-associated melanotumorigenesis.

Results
Characteristics of the study population
The clinical characteristics of patients who provided
GCMN and normal skin samples are listed in Table 1. All
GCMN were over 20 cm in diameter. A representative
GCMN lesion in a patient is shown in Figure 1A. To
minimize environmental bias between individuals, we
collected three paired normal and GCMN skin samples
from three GCMN donors for one-dimensional-liquid
chromatography-tandem mass spectrometry (1D-LC-
MS/MS) analysis (Table 1). Seven unpaired samples from
normal skin and GCMN were used for western blot ana-
lysis to validate the proteomic results. The average age of
GCMN patients who donated samples for western blot
analysis was lower (5.57 ± 1.90) than that of the normal
skin donors (22.71 ± 11.01, p = 0.0058, n = 7).
Proteomic alterations in GCMN
The same amount (20 μg) of soluble proteins obtained
from GCMN and normal skin samples were analyzed on
sodium dodecyl sulfate polyacrylamide gel electrophor-
esis (SDS-PAGE; Figure 1B). The Coomassie blue-
stained gels were sliced into 15 uniform slices. The total
ion current chromatogram of each slice was acquired
(Additional file 1: Figure S1), which led to the identifica-
tion of 438 non-redundant proteins (Additional file 2:
Table S2). Among these, 343 proteins were commonly
identified in both the groups, 62 proteins were detected
only in GCMN samples, and 33 proteins were detected
only in normal skin samples (Figure 1C). Forty-six abun-
dance modified proteins were identified whose protein
abundance level was significantly (Student’s t-test with
Bonferroni correction, p < 0.05) different between
GCMN and normal skin (Figure 1D). The large majority
of these abundance modified proteins were upregulated



Figure 1 Comparative proteomic analysis of giant congenital
melanocytic nevi (GCMN) and normal skin samples using
one-dimensional-liquid chromatography-electrospray
ionization-tandem mass spectrometry. (A) A representative
GCMN lesion of a donor patient (B) Coomassie-stained gel of normal
skin and GCMN proteins (n = 3 each). Slice number indicates the
matching mass peak result in Additional file 1: Figure S1. (C) Venn
diagram of the identified proteins in normal and GCMN skin samples.
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(42 of 46, 91.3%), and very few (4 proteins, 8.7%) were
downregulated in GCMN (Figure 2, Table 2). The most
upregulated protein in GCMN was cathepsin D (CTSD)
[GenBank Gene ID: 1509], which was expressed at a 6.8-
fold higher level than in normal skin. In addition, pro-
tein disulfide-isomerase A3 precursor (PDIA3, 5.4-fold)
[GenBank Gene ID: 2923], prohibitin (PHB, 5.3-fold)
[GenBank Gene ID: 5245], heat-shock protein 70 (5.2-
fold) [GenBank Gene ID: 3312], D-3-phosphoglycerate
dehydrogenase (5-fold) [GenBank Gene ID: 26227], and
adenosine-5'-triphosphate synthase subunit beta (5-fold)
[GenBank Gene ID: 506] were highly (>4-fold) upregu-
lated in GCMN. The 4 proteins downregulated in
GCMN were cytokeratin-1 (−1.4-fold) [GenBank Gene
ID: 3848], filaggrin 2 (−4.7-fold) [GenBank Gene ID:
388698], hornerin (−6.0-fold) [GenBank Gene ID:
388697], and alcohol dehydrogenase 1B (−6.2-fold)
[GenBank Gene ID: 125]. Interestingly, we found that
33% (14 of total 42) of the significantly upregulated pro-
teins in GCMN samples were implicated in various
kinds of cancers (Table 2). Five of the 14 proteins,
namely CTSD [GenBank Gene ID: 1509][9,10], PHB
[GenBank Gene ID: 5245][11,12], chondroitin sulfate
proteoglycan 4 [GenBank Gene ID: 1464] [13],
phosphatidylethanolamine-binding protein 1 [GenBank
Gene ID: 5037] [14], and ribosomal protein SA [Gen-
Bank Gene ID: 3921] [15] were related with melanoma.

Systemic properties of the altered GCMN proteome
Proteomic profiling of certain diseases has been increas-
ingly used to acquire data on a large number of proteins
to identify potential biomarkers and to gain insight into
the underlying mechanisms of a variety of diseases.
However, the massive amount of generated information
often only increases the complexity of these analyses. To
address this issue, we developed a systemic approach to
analyze the proteomic data generated in the present
study. To gain an insight into the systemic properties of
the GCMN proteome, the 46 abundance modified pro-
teins were categorized based on molecular function, bio-
logical process, and Clusters of Orthologous Groups of
proteins (COG) analysis. The proteins were classified
into the following classes according to their molecular
functions: chaperones (16% of total), oxidoreductases
(8%), and cytoskeletal elements (7%) (Figure 3A). Pro-
teins associated with the biological processes of signal
transduction (15%), cell structure and motility (10%),
protein metabolism and modification (10%), and cell
cycle (10%) were markedly altered in their expression.
The COG analysis showed that the altered proteins in
GCMN samples were involved in posttranslational
modification, turnover, chaperones (30%), and the cyto-
skeleton (12%; Figure 3C), which was consistent with the
molecular function and biological process classification.
Further network analysis was carried out using the

software tool, ClueGO, to identify enriched functional
groups in the GCMN samples and obtain detailed infor-
mation on each one. Gene Ontology (GO)_biological



Figure 2 Fold-changes in abundance modified proteins in GCMN compared to normal skin. The histogram displays the protein symbol
and the averaged fold-change of each differentially expressed protein in GCMN. A total of 46 proteins were differentially expressed, with 4
proteins downregulated and 42 upregulated in GCMN compared to normal skin.
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process, GO_cellular component, GO_molecular function,
KEGG pathway, and Reactome_biocarta were selected as
ontology sources. The specific functional groups identified
as significantly enriched in GCMN were melanosome
(GO_cellular component), neurotrophin signaling pathway
(KEGG pathway), downregulated of MTA-3 in ER-negative
breast tumors (Biocarta), cell cycle (KEGG pathway),
phospholipase inhibitor activity (GO_molecular function),
and glycolysis/gluconeogenesis (KEGG pathway; Table 3,
Additional file 3: Figure S2).
Because proteins rarely act alone, but rather interact

as a group, thus comprising a functional cluster, a
protein-protein interacting network was constructed
using STRING 8.0. This network consisted of 45 of the
46 abundance modified proteins, with 52 interactions
between them. In the GCMN network, the upregulated
proteins were tightly linked with each other, forming a
large cluster. The biological meaning of the cluster was
determined by overlaying the COG of each protein on
the network, which revealed shared COGs between close
neighboring proteins (Figure 4). Moreover, the GCMN
network contained a highly specific protein cluster,
identified as the 14-3-3 protein family, whose members
were expressed at significantly higher levels than in nor-
mal skin as follows: 14-3-3 sigma (or SFN, 1.7-fold)
[GenBank Gene ID: 2810], 14-3-3 protein beta/alpha
(YWHAB, 2.2-fold) [GenBank Gene ID: 7529], 14-3-3
protein epsilon (YWHAE, 4.2-fold) [GenBank Gene ID:
7531], 14-3-3 protein gamma (YWHAG, 2.1-fold) [Gen-
Bank Gene ID: 7532], 14-3-3 protein theta (YWHAQ,
3.3-fold) [GenBank Gene ID: 10971], and 14-3-3 protein
zeta/delta (YWHAZ, 2.6-fold) [GenBank Gene ID: 7534].

Comparison of systemic properties between GCMN and
metastatic melanoma
To investigate the inter-relationship between the prote-
omic characteristics of GCMN and melanoma, we com-
pared our GCMN proteome network with a recently
reported proteome of metastatic melanoma cell line that
contained 110 non-redundant proteins [16]. We selected
63 of the total melanoma proteins that had been
included in the two high-score biological networks and
analyzed protein-protein interactions between the
GCMN and melanoma proteomes (Figure 5A). Five



Table 2 Abundance modified proteins in GCMN

Identified proteins Cancer implication Accession number1 p-Value Fold-change GeneID2

Post-translational modification, protein turnover, chaperones (15)

CTSD cathepsin D - breast [52] ovarian [53]
melanoma [14,15]

IPI00011229 0.024 6.8 1509

HSP90AA1 heat shock protein
90-kDa alpha (cytosolic),
class A member 1 isoform 1

IPI00382470 0.02 3.4 3320

HSP90AB1 heat shock
protein HSP 90-beta

IPI00414676 0.013 3.6 3326

HSPA1A;HSPA1B heat
shock 70-kDa protein 1

IPI00304925 0.031 2.4 3303

HSPA8 Isoform 1 of heat
shock cognate 71-kDa protein

IPI00003865 0.0016 5.2 3312

HSPB1 heat shock protein beta-1 IPI00025512 0.0027 3.8 3315

PDIA3 protein disulfide-isomerase A3 ovarian [54] IPI00025252 0.012 5.4 2923

PHB prohibitin gastric carcinoma [28],
thyroid cancer [29],
hepatocellular carcinoma [30],
melanoma [16,17]

IPI00017334 0.025 5.3 5245

PSMB1 proteasome
subunit beta type-1

IPI00025019 0.045 3.5 5689

SFN Isoform 1 of 14-3-3
protein sigma

IPI00013890 0.027 1.7 2810

YWHAB long isoform of
14-3-3beta/alpha

IPI00216318 0.0012 2.2 7529

YWHAE 14-3-3epsilon IPI00000816 0.0051 4.2 7531

YWHAG 14-3-3gamma IPI00220642 0.024 2.1 7532

YWHAQ 14-3-3theta IPI00018146 0.00088 3.3 10971

YWHAZ 14-3-3zeta/delta IPI00021263 0.0021 2.6 7534

Cytoskeleton (4)

CAPZA1 F-actin-capping
protein subunit alpha-1

IPI00005969 0.0044 2.6 829

CAPZB cDNA, FLJ93598,
highly similar to Homo sapiens
capping protein (actin filament)
muscle Z-line, beta

IPI00641107 0.017 2.9 832

Isoform 2 of dynein heavy chain 2,
axonemal

IPI00651691 0.004 2.3 146754

Isoform 2 of myosin light
chain kinase, smooth muscle

IPI00221255 0.0018 2.6 4638

General function prediction only (5)

CDC42 Isoform 2 of cell-division
control protein 42 homolog

immune escape of cancer [55] IPI00016786 0.017 2.8 998

CSPG4 chondroitin sulfate
proteoglycan 4

melanoma, human carcinoma,
sarcoma [18]

IPI00019157 0.026 2.3 1464

HNRNPA2B1 isoform B1 of
heterogeneous nuclear
ribonucleoproteins A2/B1

glioblastoma[56] lung cancer [57] IPI00396378 0.015 4.9 3181

PEBP1
phosphatidylethanolamine-binding
protein 1

prostate [58], breast [59],
gastrointestinal stromal [60],
melanoma [19], ovarian [61]

IPI00219446 0.026 2.9 5037

RAC1 isoform A of Ras-related C3
botulinum toxin substrate 1

skin tumor [62] IPI00010271 0.0092 3.7 5879

Carbohydrate transport and metabolism (3)

ALDOA fructose-bisphosphate aldolase A IPI00465439 0.034 4 226

IPI00453476 0.0012 3.1
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Table 2 Abundance modified proteins in GCMN (Continued)

Uncharacterized protein
ENSP00000348237

FLG2 filaggrin-2 IPI00397801 0.000021 0.2 388698

Energy production and conversion (2)

ATP5B ATP
synthase subunit beta,
mitochondrial

IPI00303476 0.032 5 506

ETFA electron transfer
flavoprotein subunit alpha,
mitochondrial

IPI00010810 0.0028 3.4 2108

Signal transduction mechanisms (3)

ARHGDIA rho
GDP-dissociation
inhibitor 1

mesothelioma [63] IPI00003815 0.047 3.4 396

FBLN5 fibulin-5 breast cancer [64] IPI00294615 0.0028 3.4 10516

RYR3 uncharacterized protein RYR3 IPI00217185 0.013 2.7 6263

Intracellular trafficking, secretion, and vesicular transport (3)

ANXA1 annexin A1 breast cancer [65] IPI00218918 0.03 3 301

ANXA2 annexin A2 isoform 1 breast cancer [66] IPI00418169 0.0059 1.8 302

ANXA5 annexin A5 colorectal cancer [67] IPI00329801 0.025 3.8 308

Amino acid transport and metabolism (2)

PHGDH D-3-phosphoglycerate
dehydrogenase

breast cancer [68] IPI00011200 0.031 5 26227

TPSB2 TPSB2 IPI00419942 0.043 2.2 64499

Lipid transport and metabolism (2)

ECH1 delta(3,5)-delta(2,4)-dienoyl-CoA
isomerase,
mitochondrial

IPI00011416 0.00034 3.1 1891

FASN fatty acid synthase breast cancer,
endometrial cancer [69]
prostate cancer [70]

IPI00026781 0.023 3.1 2194

Translation, ribosomal structure, and biogenesis (2)

EEF1A1 elongation
factor 1-alpha 1

IPI00396485 0.012 2.5 1915

RPSA ribosomal protein SA, 33-kDa protein melanoma [20] IPI00413108 0.024 2.9 3921

RNA processing and modification (1)

HNRNPU short isoform
of heterogeneous nuclear
ribonucleoprotein U

IPI00479217 0.0037 2.3 3192

Cell cycle control, cell division, chromosome partitioning (1)

KRT1 keratin, type II cytoskeletal 1 IPI00220327 0.016 0.7 3848

Inorganic ion transport and metabolism (1)

CLIC1 chloride
intracellular channel
protein 1

IPI00010896 0.015 3.5 1192

Secondary metabolites biosynthesis, transport, and catabolism (1)

ADH1B alcohol dehydrogenase 1B IPI00473031 0.025 0.2 125

Function unknown (1)

HRNR hornerin IPI00398625 0.035 0.2 388697

Accession Number1: International Protein Index (IPI) accession number, GeneID2: NCBI GeneID.
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proteins including PHB, CTSD, elongation factor 1-alpha
1 (EEF1A1), Annexin A2 (ANXA2), and heat-shock pro-
tein beta-1 (HSPB1) were similarly upregulated in both
proteome sets. Subsequently, we found that 217 interac-
tions existed between the GCMN and melanoma
proteomes. To estimate the biological importance of the



Figure 3 (See legend on next page.)
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(See figure on previous page.)
Figure 3 Functional categories and their corresponding percentages in the GCMN proteome. Molecular function (A), biological process
(B), and clusters of orthologous groups (COG) (C) were analyzed using the online bioinformatic tools PANTHER (http://www.pantherdb.org/) and
COGnitor provided by the NCBI database (http://www.ncbi.nlm.nih.gov/COG/old/xognitor.html).
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14-3-3 family proteins in the process of melanotumori-
genesis, we next analyzed the protein-protein interac-
tions of 14-3-3 family proteins with the GCMN and
melanoma proteomes. We identified a total of 23 pro-
teins, out of which 6 proteins in the GCNM and 17 pro-
teins in the melanoma proteome possibly interacted with
the 14-3-3 family proteins (Figure 5B). Two proteins
interacting with 14-3-3, PHB and EEF1A1, were co-
detected in both GCMN and melanoma proteomes. Add-
itionally, the average interaction number of the 14-3-3
family proteins (7.66) was 2-fold higher than the average
interaction number of other proteins (3.80). These results
suggest that there are similar proteomic alterations in
both GCMN and metastatic melanoma and the 14-3-3
family proteins may play an important role in melanotu-
morigenesis and tumor progression.

Validation of the abundance modified proteins
To further validate the proteomic results, we evaluated
the altered expression of 14-3-3 alpha/beta, sigma, epsi-
lon, zeta, tau, and of prohibitin in GCMN and unpaired
normal skin samples (n = 7) using semi-quantitative
western blots. The integrated values of each protein
band are reported in supplementary Additional files 4:
Table S2 and Additional files 5.: Table S3 Because it was
difficult to obtain skin specimens from normal children
younger than 10 years of age, we could not use age-
Table 3 Enriched functional group in GCMN

Functional group Group Genes G

Cell cycle ANXA1|SFN|YWHAB|
YWHAE|YWHAG|YWHAQ|
YWHAZ

K

Phospholipase
inhibitor activity

ANXA1|ANXA2|ANXA5|
ARHGDIA|ATP5B|KRT1

G

Melanosome ANXA1|ANXA2|ANXA5|
ATP5B|CLIC1|CTSD|FASN|
HRNR|HSP90AA1|HSP90AB1|
HSPA1B|HSPA8|HSPB1|KRT1|
PDIA3|RAC1|SFN|YWHAB|
YWHAE|YWHAG|YWHAZ

G

Neurotrophin
signaling pathway

ACTB|ARHGDIA|CAPZA1|
CAPZB|CDC42|HSPB1|MYLK|
RAC1|SFN|YWHAB|YWHAE|
YWHAG|YWHAQ|YWHAZ

K

Downregulated
of MTA-3 in
ER-negative
breast tumors

ADH1B|ALDOA|CTSD|
ECH1|HSPB1|PHGDH|RYR3

B

Glycolysis/Gluconeogenesis ADH1B|ALDOA|ECH1|FASN K
1% of associated genes identified in our results/total known genes involved in the f
matched normal skin samples. However, we used com-
paratively young skin samples obtained from subjects
whose average age was validated as 22.7 years. As seen
in the representative western blots (Figures 6A and B),
the protein expression of 14-3-3 epsilon, 14-3-3 tau, and
prohibitin in GCMN samples was 1.55-fold, 2-fold, and
2.53-fold, respectively, which was significantly higher
than that in normal skin samples. However, the expres-
sion of 14-3-3alpha/beta, sigma, and zeta were not sig-
nificantly different in GCMN and normal skin samples.
One possible explanation for the unmatched results be-
tween the results of the proteomic and western blot ana-
lysis might be the diversity of samples used in the
western blot analysis, which unlike the paired samples
utilized in the proteomic analysis, were collected from
normal skin samples of seven non-GCMN patients.
We further analyzed the expression levels of 14-3-3

epsilon, 14-3-3 tau, and prohibitin in normal skin fibro-
blast cell line (Detroit 551) and three kinds of melanoma
cell lines (SK-MEL-2, SK-MEL-5, and SK-MEL-28) to
validate whether our proteomic findings are truly rele-
vant to clinical melanoma. Our results showed that the
protein levels of 14-3-3 epsilon were significantly
increased in all melanoma cell lines, and the levels of
14-3-3 tau were significantly increased in the SK-MEL-2
and SK-MEL-28 cell lines. Additionally, the protein
levels of prohibitin were increased in the SK-MEL-2 and
OID % Genes1 p-Value2 p-Value/B3

EGG:04110 5.0 9.00E-07 4.77E-05

O:0004859 27.3 3.17E-06 1.68E-04

O:004247 12.8 4.09E-16 2.17E-14

EGG:04722 6.1 2.36E-09 1.25E-07

ioCarta:204 28.6 4.94E-08 2.62E-06

EGG:00010 4.7 7.23E-04 0.038

unction or pathway, 2Term p-Value, 3Term p-Value with Bonferroni correction.

http://www.pantherdb.org/
http://www.ncbi.nlm.nih.gov/COG/old/xognitor.html


Figure 4 The proteome network of GCMN. Interactions between the proteins altered in GCMN were analyzed by String 8.0 and visualized with
COG functional clustering. The proteins 14-3-3 sigma (or SFN, 1.7-fold), 14-3-3 beta/alpha (YWHAB, 2.2-fold), 14-3-3 epsilon (YWHAE, 4.2-fold),
14-3-3 gamma (YWHAG, 2.1-fold), 14-3-3 theta (YWHAQ, 3.3-fold), and 14-3-3 zeta/delta (YWHAZ, 2.6-fold) were tightly linked with each other
and formed specific functional clusters (red circles).
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Figure 5 Protein-protein interaction map of GCMN and melanoma. A. GCMN and melanoma show five common upregulated proteins,
namely PHB, HSPB1, ANXA2, CTSD, and EEF1A1. There are 217 cross-interactions between the GCMN and melanoma proteome. B. A total of 23
proteins (6 proteins from the GCNM proteome and 17 proteins from the melanoma proteome) interact with the differentially expressed 14-3-3
protein family in GCMN. Two interacting proteins, PHB and EEF1A1, were co-detected in both groups.
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SK-MEL-5 cells, but were decreased in the SK-MEL-28
cell line (Figures 7A and B).

Discussion
In the present study, the proteomic composition of GCMN
was compared with that of normal skin. A major aim of
the study was the identification of proteins whose expres-
sion is altered in GCMN, which will help understand the
altered biological processes in GCMN and help gain an
insight into the mechanism of melanotumorigenesis in
these malformations. LC-MS/MS analysis showed that 46
of the 438 identified proteins changed in their abundance
levels between the normal skin and GCMN samples. In the
GCMN samples, 92% of the abundance modified proteins
were upregulated, but only 8% were downregulated
(Figure 2 and Table 2). The use of different bioinformatic
tools showed that GCMN clearly differed from normal skin
in terms of protein expression patterns, which suggested
that specific biological processes are altered in GCMN. As
derived from the GO categories, KEGG pathways, and
Reactome_biocarta, these processes were shown to encom-
pass several major biological functions, namely the neuro-
trophin signaling pathway, downregulated of MTA-3 in
ER-negative breast tumors, the cell cycle, phospholipase in-
hibitor activity, and glycolysis/gluconeogenesis. Strikingly,
among these, neurotrophin signaling [17,18], MTA-3
downregulation (Table 3) [19], cell cycle deregulation [20],
and glycolysis/gluconeogenesis [21] have been implicated
in the development and progression of melanoma and
other cancers.
Comparison of systemic properties of the GCMN and

metastatic melanoma proteomes revealed that these two
different disease proteomes shared at least five proteomic
alterations in common and their abundance modified pro-
teins closely interacted with each other (Figure 5A). Be-
cause closely related diseases are known to share common



Figure 6 Validation of protein expression of the 14-3-3 protein
family and PHB. A. Representative western blot images of 14-3-3
epsilon, 14-3-3 tau, and prohibitin proteins in normal and GCMN
skin samples. B. The relative protein expression of 14-3-3 epsilon,
14-3-3 tau, and prohibitin was significantly increased in GCMN
samples compared to normal skin samples (n = 7). *p < 0.05, two-
tailed unpaired Student’s t-test vs. normal skin sample.

Figure 7 Validation of protein expression of the 14-3-3 protein
family and PHB in normal and melanoma cell lines. A.
Representative western blot images of 14-3-3 epsilon, 14-3-3 tau,
and prohibitin in normal skin cells (Detroit 551) and human
melanoma cell lines (SK-MEL-2, SK-MEL-5, and SK-MEL-28). B. Relative
protein expression of 14-3-3 epsilon, 14-3-3 tau, and prohibitin in
normal skin cells (Detroit 551) and human melanoma cell lines
(SK-MEL-2, SK-MEL-5, and SK-MEL-28) (n = 3 for each cell lines).
*p < 0.05, two-tailed unpaired Student’s t-test vs. Detroit 551 (normal
skin cells).
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proteins or common interactions [22], our results suggested
the close relationship between GCMN and melanoma.
Our proteomic analysis also revealed the significantly

increased expression of 14 cancer-related proteins in
GCMN compared to normal skin samples. Among them,
PHB is a molecular maker of malignant cancers, and
overexpression of PHB has been reported in melanoma
[11,12] and various kinds of cancers, including gastric
carcinoma [23], thyroid cancer [24], and hepatocellular
carcinoma [25]. This significant upregulation of cancer-
related proteins in GCMN, specifically which of
melanoma-implicated proteins, strengthened the pos-
sible risk of melanotumorigenesis in GCMN.
The 14-3-3 proteins comprise a highly conserved fam-

ily of proteins whose members are found in both plants
and mammals. They mediate signal transduction by
binding to phosphoserine-containing proteins and are
involved in many biological cellular processes, such
as metabolism, protein trafficking, signal transduction,
apoptosis, and cell cycle regulation, through interaction
with various phosphoserine-containing proteins, such as
CDC25 phosphatases, RAF1, and IRS1 proteins. In the
present study, 14-3-3 family proteins were estimated to
interact with 23 proteins in GCMN and melanoma
(Figure 5B), and their average number of interactions was
about 2-fold higher than the average number of interactions
of other abundance modified proteins. These results sug-
gested that 14-3-3 family proteins could play an important
role in the alteration of biological processes in GCMN and
melanoma.
The 14-3-3 family proteins consist of seven isoforms:

beta, gamma, epsilon, sigma, zeta, tau, and eta. The alpha
and sigma isoforms are the phosphoforms of 14-3-3 beta
and zeta, respectively. All 14-3-3 proteins are ubiquitously
expressed, with the exception of 14-3-3 sigma, which is
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exclusively expressed in epithelial cells [26]. Among the
14-3-3 family members, the overexpression of the 14-3-3
sigma gene or its respective protein is frequently found in
cancers such as ovarian carcinomas [27], pancreatic can-
cer [28], papillary thyroid carcinoma [29], hepatocellular
carcinoma [29], and breast cancer [30]. In our proteomic
analysis, the expression of 14-3-3 proteins was signifi-
cantly higher in GCMN than in normal skin samples,
which strongly supports the greater tendency toward mel-
anotumorigenesis in GCMN. In particular, the enhanced
expression of 14-3-3 epsilon and tau proteins was clearly
shown in western blot analysis (Figure 6).
Compared to the other isoforms, little is known about

the molecular and biological role of 14-3-3 tau and epsi-
lon proteins. Like other isoforms, 14-3-3 tau is also
involved in cell death and survival processes. For example,
14-3-3 tau binds to ataxia telangiectasia-mutated (ATM)-
phosphorylated E2F1 during DNA damage and promotes
E2F1 stability, leading to the induction of apoptosis [31],
and the deletion of 14-3-3 tau leads to embryonic lethality
in a mouse model [32]. Interestingly, a recent study sug-
gested that 14-3-3 tau exhibits an oncogenic role by
downregulating p21 in breast cancer [33].
14-3-3 epsilon has been shown to play an essential role

in cell development. Studies in Drosophila showed that
14-3-3 epsilon is required for the correct timing of mitosis
in undisturbed post-blastoderm cell cycle [34]. More re-
cently, defects in neuronal migration during the develop-
ment of 14-3-3 epsilon-knockout mice were reported [35].
The phosphorylation-induced binding of 14-3-3 epsi-

lon to the pro-apoptotic transcription factor forkhead
transcription factor-like 1 (FKHRL1 or FOXO3a) leads
to structural changes in 14-3-3 epsilon and inhibits its
pro-apoptotic activity [36]. In inflammation and carcino-
genesis, 14-3-3 epsilon interacts with key molecules of
the mitogen-activated protein kinase signaling module
to selectively modulate tumor necrosis factor-alpha-
induced nuclear factor-kappa-beta activity [37]. The
function and regulatory mechanism of 14-3-3 epsilon in
carcinogenesis is controversial and appears to be tumor-
specific. Expression of the protein is higher in renal cell
carcinoma than that in normal kidney [38]. Moreover,
on the basis of their involvement in the tumorigenesis of
meningioma, 14-3-3 epsilon, zeta, and theta are thought
to be efficient markers for predicting the degree of ma-
lignancy of these tumors [39]. In contrast, mRNA and
protein expression of 14-3-3 epsilon in laryngeal squa-
mous cell carcinoma tissues was shown to be signifi-
cantly lower than that in normal tissues [40]. An early
role of 14-3-3epsilon in tumorigenesis is suggested by
the observation that 14-3-3 epsilon expression is
increased in intrinsically aged and photoaged human
skin [41]. Interestingly, we found even higher protein
levels of 14-3-3 epsilon, 14-3-3 tau, and PHB in GCMN
than those in aged skin samples. This result suggested
that GCMN may have a higher risk of tumorigenesis
than aged skin. Because of the limitation in sample avail-
ability, we could not directly determine the expression
level of 14-3-3 proteins and PHB in malignant melan-
oma tissue; however, we demonstrated significantly
increased protein expression of 14-3-3 epsilon and tau
in two different melanoma cell lines, SK-MEL-2 and SK-
MEL-28, compared to normal skin cell line (Detroit
551). This result might support the association of 14-3-3
epsilon and tau upregulation with clinical melanotumor-
igenesis (Figures 7A and B).
Nevertheless, further studies are needed to validate the

functional role of 14-3-3 proteins in melanotumori-
genesis through the proteomic comparison of different
malignant melanoma patients with giant congenital mel-
anocytic nevi. Furthermore, it is also necessary to care-
fully validate the biological meaning of the upregulation
of melanoma-implicated proteins in GCMN and their
role in melanotumorigenesis.

Conclusion
Taken together, our data suggest that proteomic modifi-
cations with tumorigenic potential are present in
GCMN, and these proteomic alterations possibly modify
six important biological processes or pathways that in-
clude melanosome, neurotrophin signaling pathway,
downregulated of MTA-3 in ER-negative breast tumors,
cell cycle, phospholipase inhibitor activity, and glycolysis/
gluconeogenesis These pathways may be significantly
altered in GCMN skins. The intensive alteration of 14-3-3
family proteins and PHB possibly acts as a central regula-
tor of GCMN biological pathway remodeling, which may
have an important role in the development of GCMN and
could be associated with melanotumorigenesis.

Materials and methods
Patients
A total of 10 normal and GCMN skin samples, which
were defatted, were obtained from patients who under-
went excision procedures at the Department of Plastic
Surgery, Inje University Ilsan Paik Hospital, Korea. The
collection and use of the samples were approved by the
Institutional Review Board of Inje University Ilsan Paik
Hospital (IRB No. IB-0902-015). The present study was
carried out in accordance with The Code of Ethics of the
World Medical Association (Declaration of Helsinki) for
experiments involving humans.

Cell lines and culture conditions
The human embryo skin cell line Detroit 551 and the
human malignant melanoma cell lines SK-MEL-2, SK-
MEL-5, and SK-MEL-28 were obtained from the American
Type Culture Collection (ATCC; Rockville, MD). The
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culture medium used throughout these experiments was
RPMI-1640 (Lonza, Verviers, Belgium) containing 10%
fetal bovine serum (PAA, Pasching, Austria) and 100 μg/
ml penicillin-streptomycin (Lonza). The cells were incu-
bated at 37°C in a humidified atmosphere of 5% CO2.

Sample preparation for proteomics
Three paired normal and GCMN skin samples were
selected for 1D-LC-MS/MS proteomic analysis to exclude
environmental bias. Excised skin samples were ground to
a powder in liquid nitrogen, dissolved in lysis buffer (9 M
urea, 2 M thiourea, 4% CHAPS (3-[(3-cholamidopropyl)
dimethylammonio]-1-propanesulfonate), 40 mM dithio-
threitol (DTT), and 1% protease inhibitor cocktail), vor-
texed, and incubated on ice for 1 h. The mixture was then
centrifuged (10,000× g, 30 min, 4°C), and the total proteins
contained in the supernatant were used for the experi-
ments. The total protein content of the solution was deter-
mined using the 2D Quant kit (GE Healthcare, Milwaukee,
WI), with bovine serum albumin (0–50 mg/ml) as the
standard.

1D-LC-MS/MS
Protein separation and LC-MS analysis were performed as
previously described [42]. Briefly, dissolved skin proteins
were separated on a 12% polyacrylamide gel by SDS-PAGE.
The gels were washed three times with ddH2O for 5 min
each and stained with Bio-Safe Coomassie stain solution
(Coomassie G250 stain; Bio-Rad, Hercules, CA) for 1 h,
with gentle shaking at room temperature. The Coomassie-
stained gels were evenly sliced into 15 slices and then
destained by incubation in 75 mM ammonium bicarbon-
ate/40% ethanol (1:1). Disulfides were reduced by treat-
ment with 5 mM DTT/25 mM ammonium bicarbonate at
60°C for 30 min, followed by alkylation with 55 mM iodoa-
cetoamide at room temperature for 30 min. The gel pieces
were then dehydrated in 100% acetonitrile (ACN), dried,
and swollen overnight at 37°C in 10 μl 25 mM ammonium
bicarbonate buffer containing 20 μg modified sequencing-
grade trypsin (Roche Applied Science, Indianapolis, IN)
per ml. The tryptic peptide mixture was eluted from the
gel using 0.1% formic acid. LC-MS/MS analysis was per-
formed using a ThermoFinnigan ProteomeX workstation
LTQ linear ion trap MS (Thermo Electron, San Jose, CA)
equipped with a nanospray ionization (NSI) source
(Thermo Electron). Briefly, 12 μl peptide sample obtained
from the in-gel digestion was injected and loaded onto a
peptide trap cartridge (Agilent, Palo Alto, CA). Trapped
peptides were eluted onto a 10-cm reversed-phase PicoFrit
column packed in-house with 5-μm, 300-Å pore size C18
and separated by gradient elution. The mobile phases con-
sisted of H2O and ACN, both containing 0.1% v/v formic
acid. The flow rate was maintained at 200 nl/min. The gra-
dient started at 2% ACN, then reached 60% ACN in
50 min, 80% ACN in the next 5 min, and 100% H2O in the
final 15 min. Data-dependent acquisition (m/z 400–1800)
was enabled, and each MS survey scan was followed by five
MS/MS scans within 30 s, with the dynamic exclusion op-
tion enabled. The spray voltage was 1.9 kV, the temperature
of the ion transfer tube was 195°C, and the normalized col-
lision energy was 35% [42].
Data-analyzed tandem mass spectra were extracted, and

the charge state was deconvoluted and deisotoped using
the Sorcerer 3.4 beta2 platform (Sorcerer software 3.1.4,
Sorcerer Web interface 2.2.0 r334, and Trans-, Proteomic
Pipeline 2.9.5). All MS/MS samples were analyzed using
SEQUEST (version v.27, rev. 11; ThermoFinnigan, San
Jose, CA), which was set to search the ipiHuman 3.29 data-
base (IPI ver.3.29, 40131 entries), with semitrypsin as the
digestion enzyme. The search used a fragment-ion mass
tolerance of 1.00 Da and a parent-ion mass tolerance of
1.5 Da. Iodoacetamide-derivatized cysteine was specified
as a fixed modification. Methionine oxidation, iodoaceta-
mide derivatizion of cysteine, and phosphorylation of
serine, threonine, and tyrosine were specified as variable
modifications. The Scaffold software (version Scaffold-2.0;
Proteome Software Inc., Portland, OR) was used to valid-
ate MS/MS-based peptide and protein identifications.
Peptide identifications were accepted if their probability
was >95.0%, as specified by the Peptide Prophet algorithm,
and if they contained at least one identified peptide. Pro-
tein probabilities were assigned by the Protein Prophet al-
gorithm. Proteins containing similar peptides such that
they could not be differentiated based on MS/MS analysis
alone were grouped to satisfy the principles of parsimony.
After identifying the proteins, each dataset was used for a
subtractive analysis by semi-quantitative normalized spec-
tral counts, which were normalized by total spectral
counts in the Scaffold program [43].

Bioinformatics analysis
A systemic bioinformatics analysis of the GCMN prote-
ome was conducted using the Search Tool for the Re-
trieval of Interacting Genes/Proteins (STRING 8.3) [44],
the Protein Analysis Through Evolutionary Relationships
classification system (PANTHER 7.0) [45], the National
Center for Biotechnology Information (NCBI) COG
database [46], Cytoscape, and ClueGO [47].
Western blot analysis
Protein expressions of 14-3-3 alpha+ beta (30 kDa), 14-3-3
epsilon (29 kDa), 14-3-3 zeta (28 kDa), 14-3-3 sigma
(25 kDa), 14-3-3 tau (31 kDa), and prohibitin (30 kDa) in
normal (n=7) and GCMN (n=7) samples were analyzed
by western blots to confirm the proteomic results. In
addition, protein expressions of 14-3-3 epsilon, 14-3-3 tau,
and prohibitin in a normal cell line (Detroit 551) and
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melanoma cell lines (SK-MEL-2, SK-MEL-5, and SK-MEL-
28) were analyzed by western blots. Relative expression of
each protein was normalized to an internal standard pro-
tein, β-tubulin (55 kDa) or glyceraldehyde-3-phosphate de-
hydrogenase (37 kDa) (Abcam, Cambridge, MA). The
values were expressed as mean± standard error.

Statistical analysis
Two-tailed unpaired Student’s t-test in the Scaffold (version
2.06.02) software was used to compare abundance of each
protein in the normal and GCMN skin samples. Using the
Origin software (version 7.0220, OriginLabs, MA, USA),
Bonferroni correction was applied to control the rate of
false positives in the comparison of means of each protein’s
abundance. A two-tailed unpaired Student’s t-test was used
to compare the results of western blot analysis between the
normal and GCMN skin samples. p < 0.05 was considered
statistically significant.

Additional files

Additional file 1: Figure S1. Peptide mass peak of 15 slices dissected
from 1D gels of normal skin and GCMN.

Additional file 2: Table S1. Identified proteins in skin samples of
Normal and GCMN patients.

Additional file 3: Figure S2. The functional network and enriched
functional group of GCMN was analyzed using ClueGO, a biological term
enrichment analyzer. The following proteins were significantly enriched
in GCMN: melanosome (GO_cellular component), neurotrophin signaling
pathway (KEGG pathway), downregulated of MTA-3 in
ER-negative breast tumors (Biocarta), cell cycle (KEGG pathway),
phospholipase inhibitor activity (GO_molecular function), and
glycolysis/gluconeogenesis (KEGG pathway).

Additional file 4: Table S2. Integrated densitometry value of Western
blot band.

Additional file 5: Table S3. Statistical analysis result of western blot.
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